【題目】已知橢圓C: =1(a>b>0),定義橢圓C上的點M(x0,y0)的“伴隨點”為
.
(1)求橢圓C上的點M的“伴隨點”N的軌跡方程;
(2)如果橢圓C上的點(1,)的“伴隨點”為(
,
),對于橢圓C上的任意點M及它的“伴隨點”N,求
的取值范圍;
(3)當a=2,b=時,直線l交橢圓C于A,B兩點,若點A,B的“伴隨點”分別是P,Q,且以PQ為直徑的圓經過坐標原點O,求△OAB的面積.
【答案】(1)x2+y2=1,(2),(3)
【解析】
(1)由代入橢圓方程即可求得橢圓C上的點M的“伴隨點”N的軌跡方程;
(2)由題意,求得橢圓的方程,根據向量的坐標運算,即可求得
(3)求得橢圓方程,設方程為,代入橢圓方程,利用韋達定理,根據向量數量積的坐標求得
,弦長公式及點到直線的距離公式,即可求得
的面積,直線
的斜率不存在時,設方程為
,代入橢圓方程,即可求得
的面積.
(1)設,由題意
,則
.
又,所以
.
(2)由橢圓C上的點(1,)的“伴隨點”為(
,
)
則,得
,又
,則
.
點,在橢圓上,
,
,且
由于,
的取值范圍是
.
(3)設,則
當直線的斜率存在時,設其方程為
,由
.
得 .
則
①
由以為直徑的圓經過坐標原點
可得:
,即
.
又
整理得: ②
將①代入②得:
,則
,
所以.
又點到直線
的距離
所以
當直線的斜率不存在時,設其方程為
聯立橢圓方程得
,得
.
解得:,從而
.
綜上:的面積是定值.
科目:高中數學 來源: 題型:
【題目】據環保部門測定,某處的污染指數與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數為k(k>0).現已知相距18km的A,B兩家化工廠(污染源)的污染強度分別為a,b,它們連線上任意一點C處的污染指數y等于兩化工廠對該處的污染指數之和.設AC=x(km).
(1)試將y表示為x的函數;
(2)若a=1,且x=6時,y取得最小值,試求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年諾貝爾生理學或醫學獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的
抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內勻速滴下液體(滴管內液體忽略不計),設輸液開始后
分鐘,瓶內液面與進氣管的距離為
厘米,已知當
時,
.如果瓶內的藥液恰好
分鐘滴完.則函數
的圖像為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節大豆新品種一天內發芽數之間的關系進行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖甲),以及實驗室每天每100顆種子中的發芽數情況(如圖乙),得到如下資料:
最高溫度
最低溫度
甲
乙
(1)請畫出發芽數y與溫差x的散點圖;
(2)若建立發芽數y與溫差x之間的線性回歸模型,請用相關系數說明建立模型的合理性;
(3)①求出發芽數y與溫差x之間的回歸方程(系數精確到0.01);
②若12月7日的晝夜溫差為,通過建立的y關于x的回歸方程,估計該實驗室12月7日當天100顆種子的發芽數.
參考數據:.
參考公式:
相關系數:(當
時,具有較強的相關關系).
回歸方程中斜率和截距計算公式:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B、C是橢圓W:上的三個點,O是坐標原點.
(I)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積.
(II)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已定義,已知函數
的定義域都是
,則下列四個命題中為真命題的是_________.(寫出所有真命題的序號)
① 若都是奇函數,則函數
為奇函數.
② 若都是偶函數,則函數
為偶函數.
③ 若都是增函數,則函數
為增函數.
④ 若都是減函數,則函數
為減函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com