【題目】據環保部門測定,某處的污染指數與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數為k(k>0).現已知相距18km的A,B兩家化工廠(污染源)的污染強度分別為a,b,它們連線上任意一點C處的污染指數y等于兩化工廠對該處的污染指數之和.設AC=x(km).
(1)試將y表示為x的函數;
(2)若a=1,且x=6時,y取得最小值,試求b的值.
科目:高中數學 來源: 題型:
【題目】有一矩形硬紙板材料(厚度忽略不計),一邊長為6分米,另一邊足夠長.現從中截取矩形
(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計),其中
是以
為圓心、
的扇形,且弧
,
分別與邊
,
相切于點
,
.
(1)當長為1分米時,求折卷成的包裝盒的容積;
(2)當的長是多少分米時,折卷成的包裝盒的容積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是圓
的直徑,點
是圓
上異于
,
的點,直線
平面
,
,
分別是
,
的中點.
(Ⅰ)記平面與平面
的交線為
,試判斷直線
與平面
的位置關系,并加以證明;
(Ⅱ)設,求二面角
大小的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,b,c,若a與b共面,b與c共面,則a與c共面;④若直線l上有一點在平面α外,則l在平面α外.其中錯誤命題的個數是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,動點
到定點
的距離與
到定直線
的距離之比為
(1)求動點的軌跡
的方程;
(2)若軌跡上的動點
到定點
的距離的最小值為1,求
的值;
(3)設點、
是軌跡
上兩個動點,直線
、
與軌跡
的另一交點分別為
、
,且直線
、
的斜率之積等于
,問四邊形
的面積
是否為定值?請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),定義橢圓C上的點M(x0,y0)的“伴隨點”為
.
(1)求橢圓C上的點M的“伴隨點”N的軌跡方程;
(2)如果橢圓C上的點(1,)的“伴隨點”為(
,
),對于橢圓C上的任意點M及它的“伴隨點”N,求
的取值范圍;
(3)當a=2,b=時,直線l交橢圓C于A,B兩點,若點A,B的“伴隨點”分別是P,Q,且以PQ為直徑的圓經過坐標原點O,求△OAB的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com