【題目】某地擬建一座長為640米的大橋,假設橋墩等距離分布,經設計部門測算,兩端橋墩
造價總共為100萬元,當相鄰兩個橋墩的距離為
米時(其中
).中間每個橋墩的平均造價為
萬元,橋面每1米長的平均造價為
萬元.
(1)試將橋的總造價表示為的函數
;
(2)為使橋的總造價最低,試問這座大橋中間(兩端橋墩除外)應建多少個橋墩?
科目:高中數學 來源: 題型:
【題目】《中國好聲音(The Voice of China)》是由浙江衛視聯合星空傳媒旗下燦星制作強力打造的大型勵志專業音樂評論節目,于2012年7月13日正式在浙江衛視播出.每期節目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉身,則該選手可以選擇加入為其轉身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手演唱完后,四位導師為其轉身的情況如下表所示:
現從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉身情況.
(1)請列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉身的導師不少于3人,而另一人為其轉身的導師不多于2人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個內角為,周長為定值
,求面積
的最大值;
(3)為了研究邊長滿足
的三角形其面積是否存在最大值,現有解法如下:
(其中
, 三角形面積的海倫公式),
∴
,
而,
,
,則
,
但是,其中等號成立的條件是,于是
與
矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知方程.
(1)求該方程表示一條直線的條件;
(2)當為何實數時,方程表示的直線斜率不存在?求出這時的直線方程;
(3)已知方程表示的直線在
軸上的截距為-3,求實數
的值;
(4)若方程表示的直線的傾斜角是45°,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據某電子商務平臺的調查統計顯示,參與調查的1000位上網購物者的年齡情況如圖.
(1)已知、
,
三個年齡段的上網購物者人數成等差數列,求
,
的值;
(2)該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發放代金券,高消費人群每人發放50元的代金券,潛在消費人群每人發放80元的代金券,已經采用分層抽樣的方式從參與調查的1000位上網購物者中抽取了10人,現在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據某電子商務平臺的調查統計顯示,參與調查的位上網購物者的年齡情況如右圖.
(1)已知、
、
三個年齡段的上網購物者人數成等差數列,求
的值;
(2)該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發放代金券,高消費人群每人發放
元的代金券,潛在消費人群每人發放
元的代金券.已經采用分層抽樣的方式從參與調查的
位上網購物者中抽取了
人,現在要在這
人中隨機抽取
人進行回訪,求此三人獲得代金券總和
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,函數
,
(
為自然對數的底數),且函數
的圖象與函數
的圖象在
處有公共的切線.
(Ⅰ)求的值;
(Ⅱ)討論函數的單調性;
(Ⅲ)證明:當時,
在區間
內恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com