【題目】已知函數.
(1)判斷函數的單調性;
(2)若,證明:關于
的不等式
在
上恒成立.
【答案】(1)當時函數
在
上單調遞減;當
時,
在
上單調遞減,在
上單調遞增;(2)證明見解析.
【解析】
(1)先求得導函數,對分類討論:當
時,易得
,即可判斷函數
的單調性;當
時,令
,求得極值點,即可判斷在極值點左右兩側的函數單調性.
(2)將解析式代入,移項后構造函數
.求得導函數
.根據
可知
,因而構造函數
,求得導函數
,可判斷
的單調性,進而由單調性與最值得
,即
.由
討論
的取值情況,判斷
的單調性,并求得最值,即可證明
,從而證明不等式成立.
(1)函數,
則;
若,則
,此時函數
在
上單調遞減;
若,令
,解得
,
故當時,
;
當時,
,
故函數在
上單調遞減,在
上單調遞增;
(2)證明:要證,即證
,
令,
則,
當時,
,
令,則當
時,
,
故函數在
上單調遞增,
即;
∴.
當時,
,當
時,
,
函數在
上單調遞減,在
上單調遞增,
故,
即,
故關于的不等式
在
上恒成立.
科目:高中數學 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的離心率為
,左,右焦點分別為F1,F2,過F1的直線交橢圓C于A,B兩點,△AF2B的周長為8,
(1)求該橢圓C的方程.
(2)設P為橢圓C的右頂點,Q為橢圓C與y軸正半軸的交點,若直線l:yx+m,(﹣1<m<1)與圓C交于M,N兩點,求P、M、Q、N四點組成的四邊形面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓(
)的左、右焦點為
,右頂點為
,上頂點為
.已知
.
(1)求橢圓的離心率;
(2)設為橢圓上異于其頂點的一點,以線段
為直徑的圓經過點
,經過原點
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市近郊有一塊大約的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設如圖所示的一個矩形場地,其中總面積為3000平方米,其中陰影部分為通道,通道寬度為2米,中間的三個矩形區域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為
平方米.
(1)分別用表示
和
的函數關系式,并給出定義域;
(2)怎樣設計能使取得最大值,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的右焦點為
,離心率
.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球4個,白球3個,藍球3個。
(Ⅰ)現從中任取出一球確定顏色后放回盒子里,再取下一個球,重復以上操作,最多取3次,過程中如果取出藍色球則不再取球,求:
①最多取兩次就結束的概率;
②整個過程中恰好取到2個白球的概率;
(Ⅱ)若改為從中任取出一球確定顏色后不放回盒子里,再取下一個球。重復以上操作,最多取3次,過程中如果取出藍色球則不再取球,則設取球的次數為隨機變量求
的分布列和數學期望,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com