【題目】如圖,某種螺帽是由一個半徑為2的半球體挖去一個正三棱錐構成的幾何體,該正三棱錐的底面三角形內接于半球底面大圓,頂點在半球面上,則被挖去的正三棱錐體積為_______.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數在區間
上是增函數,求實數
的取值范圍;
(2)若是函數
的極值點,求函數
在
上的最大值;
(3)在(2)的條件下,是否存在實數,使得函數
的圖象與函數
的圖象恰有
個交點?若存在,請求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知焦點在x軸上,離心率為的橢圓E的左頂點為A,點A到右準線的距離為6.
(1)求橢圓E的標準方程;
(2)過點A且斜率為的直線與橢圓E交于點B,過點B與右焦點F的直線交橢圓E于M點,求M點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年,南昌市召開了全球VR產業大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優秀和非優秀兩類,統計兩類成績人數得到如下的列聯表:
優秀 | 非優秀 | 總計 | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
總計 | 45 | 75 | 120 |
(1)確定a,d的值;
(2)試判斷能否有90%的把握認為VR知識的測試成績優秀與否與性別有關;
(3)為了宣傳普及VR知識,從該校測試成績獲得優秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017高考新課標Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統計數據:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量/萬噸 | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數據求年需求量與年份
之間的線性回歸方程
;
(2)利用(1)中所求出的線性回歸方程預測該地2018年的糧食需求量.
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著工業化以及城市車輛的增加,城市的空氣污染越來越嚴重,空氣質量指數一直居高不下,對人體的呼吸系統造成了嚴重的影響.現調查了某市
名居民的工作場所和呼吸系統健康,得到列聯表如下:
室外工作 | 室內工作 | 合計 | |
有呼吸系統疾病 | |||
無呼吸系統疾病 | |||
合計 |
(Ⅰ)補全列聯表;
(Ⅱ)你是否有的把握認為感染呼吸系統疾病與工作場所有關;
(Ⅲ)現采用分層抽樣從室內工作的居民中抽取一個容量為的樣本,將該樣本看成一個總體,從中隨機的抽取兩人,求兩人都有呼吸系統疾病的概率.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com