(13分)如圖,某隧道設計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓。
(1)若最大拱高h為6 m,則隧道設計的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應如何設計拱高h和拱寬?(已知:橢圓
+
=1的面積公式為S=
,柱體體積為底面積乘以高。)
(3)為了使隧道內部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及
的值,使總造價最少。
(1)m;(2)當拱高為(
+3)m、拱寬為20
m時,隧道上方半橢圓部分的土方工程量最小;(3)
,
.
解析試題分析:(1)先建立直角坐標系,找到對應橢圓方程再把b=h-3=3與點P坐標代入橢圓方程,即可求出隧道設計的拱寬l是多少;
(2)轉化為求半橢圓的面積最小值問題,對橢圓方程用基本不等式即可求出對應的半橢圓面積以及滿足要求的拱高h和拱寬l.
(3)先求出總造價的表達式,再利用導函數研究其最值即可.
試題解析:解:(1)如下圖建立直角坐標系,則點P(10,2),橢圓方程為+
=1,將b=h-3=3與點P坐標代入橢圓方程,得a=
,l=2a=
,隧道的拱寬約為
m。 5分
(2)要使隧道上方半橢圓部分的土方工程量最小,由柱體的體積公式可知:只需半橢
圓的面積最小即可。
由橢圓方程+
=1,得
+
=1。因為
+
≥
,即ab≥40,…8分
所以半橢圓面積S=≥
。當S取最小值時,有
=
=
,得a=10
,b=
,此時l=2a=20
, h=b+3=
+3,故當拱高為(
+3)m、拱寬為20
m時,隧道上方半橢圓部分的土方工程量最小 13分
(3)設,
設=
+
·
=2(10
),則
令得
或17(舍)∴
時,
取最小值,此時
,代入橢圓方程得
∴
… 13分
考點:1.圓與圓錐曲線的綜合;2.利用導數求閉區間上函數的最值.
科目:高中數學 來源: 題型:解答題
(13分)點P為圓上一個動點,M為點P在y軸上的投影,動點Q滿足
.
(1)求動點Q的軌跡C的方程;
(2)一條直線l過點,交曲線C于A、B兩點,且A、B同在以點D(0,1)為圓心的圓上,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區域)”,其中、
是過拋物線
焦點
的兩條弦,且其焦點
,
,點
為
軸上一點,記
,其中
為銳角.
(1)求拋物線方程;
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點為F,過F的直線交拋物線于M、N兩點,其準線
與x軸交于K點.
(1)求證:KF平分∠MKN;
(2)O為坐標原點,直線MO、NO分別交準線于點P、Q,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線與橢圓
有公共焦點
,且橢圓過點
.
(1)求橢圓方程;
(2)點、
是橢圓的上下頂點,點
為右頂點,記過點
、
、
的圓為⊙
,過點
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、
,試問直線
是否經過定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com