【題目】已知、
為橢圓
(
)和雙曲線
的公共頂點,
、
分為雙曲線和橢圓上不同于
、
的動點,且滿足
,設直線
、
、
、
的斜率分別為
、
、
、
.
(1)求證:點、
、
三點共線;
(2)求的值;
(3)若、
分別為橢圓和雙曲線的右焦點,且
,求
的值.
科目:高中數學 來源: 題型:
【題目】設點E,F分別是棱長為2的正方體的棱AB,
的中點.如圖,以C為坐標原點,射線CDCB
分別是x軸y軸z軸的正半軸,建立空間直角坐標系.
(1)求向量與
的數量積;
(2)若點M,N分別是線段與線段
上的點,問是否存在直線MN,
平面ABCD?若存在,求點M,N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,傾斜角為a的直線經過拋物線的焦點F,且與拋物線交于A、B兩點.
(1)求拋物線的焦點F的坐標及準線的方程;
(2)若a為銳角,作線段AB的垂直平分線m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求直線BF和平面BCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,直角梯形
可以通過直角梯形
以直線
為軸旋轉得到,且平面
平面
.
(1)求證:;
(2)設、
分別為
、
的中點,
為線段
上的點(不與點
重合).
(i)若平面平面
,求
的長;
(ii)線段上是否存在
,使得直線
平面
,若存在求
的長,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該?忌纳龑W情況,統計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結論正確的是
A. 與2015年相比,2018年一本達線人數減少
B. 與2015年相比,2018年二本達線人數增加了倍
C. 2015年與2018年藝體達線人數相同
D. 與2015年相比,2018年不上線的人數有所增加
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com