【題目】在△ABC中,角A、B、C對應邊分別為a、b、c.
(1)若a=14,b=40,cosB=,求cosC;
(2)若a=3,b=,B=2A,求c的長度.
科目:高中數學 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】養正中學新校區內有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓仗幱媱潓ζ溟_發利用,其中弓形BCD區域(陰影部分)用于種植觀賞植物,△OBD區域用于種植花卉出售,其余區域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(單位:弧度),用
表示弓形BCD的面積
(2)如果該?倓仗幯埬阋巹澾@塊土地。如何設計的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,半圓O的直徑為2,A為直徑延長線上一點,OA=2,B為半圓上任意一點,以線段AB為腰作等腰直角△ABC(C、O兩點在直線AB的兩側),當∠AOB變化時,OC≤m恒成立,則m的最小值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在 △ABC 中,設 a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),
= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】點O為坐標原點,直線l經過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為 , 求直線l的方程;
(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知實數x,y滿足ax<ay(0<a<1),則下列關系式恒成立的是( )
A.>
B.ln(x2+1)>ln(y2+1)
C.sinx>siny
D.x3>y3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com