【題目】橢圓經過點
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線
與橢圓
交于不同的兩點
.在
軸上是否存在點
,使得
?若存在,求出點
的坐標;若不存在,請說明理由。
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的右頂點為(2,0),離心率為
,P是直線x=4上任一點,過點M(1,0)且與PM垂直的直線交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)若P點的坐標為(4,3),求弦AB的長度;
(3)設直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸正半軸為極軸建立極坐標系,
點的極坐標為
,斜率為
的直線
經過點
.
(I)求曲線的普通方程和直線
的參數方程;
(II)設直線與曲線
相交于
,
兩點,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區為了調查高粱的高度、粒的顏色與產量的關系,對700棵高粱進行抽樣調查,得到高度頻數分布表如下:
表1:紅粒高粱頻數分布表
農作物高度( | ||||||
頻 數 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:白粒高粱頻數分布表
農作物高度( | ||||||
頻 數 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)估計這700棵高粱中紅粒高粱的棵數;
(2)估計這700棵高粱中高粱高()在
的概率;
(3)在樣本的紅粒高粱中,從高度(單位:)在
中任選3棵,設
表示所選3棵中高(單位:
)在
的棵數,求
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現翻番.同時該家庭的消費結構隨之也發生了變化,現統計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:
則下列結論中正確的是( )
A. 該家庭2018年食品的消費額是2014年食品的消費額的一半
B. 該家庭2018年教育醫療的消費額與2014年教育醫療的消費額相當
C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍
D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1),等腰梯形,
,
,
,
,
分別是
的兩個三等分點,若把等腰梯形沿虛線
、
折起,使得點
和點
重合,記為點
, 如圖(2).
(1)求證:平面平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線的普通方程以及圓
的直角坐標方程;
(2)若直線與圓
交于
兩點,求線段
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com