【題目】如圖所示,四棱錐的底面是邊長為2的正方形,平面
平面
,
,
.
(1)求證:平面平面
;
(2)設為
的中點,問邊
上是否存在一點
,使
平面
,并求此時點
到平面
的距離.
科目:高中數學 來源: 題型:
【題目】已知動直線l過拋物線C:y2=4x的焦點F,且與拋物線C交于M,N兩點,且點M在x軸上方.
(1)若線段MN的垂直平分線交x軸于點Q,若|FQ|=8,求直線l的斜率;
(2)設點P(x0,0),若點M恒在以FP為直徑的圓外,求x0的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據該折線圖,下列結論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預測16日溫度要低于
D. 由折線圖能預測本月溫度小于的天數少于溫度大于
的天數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信運動,是由騰訊開發的一個類似計步數據庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天行走的步數,同時也可以和其他用戶進行運動量的或點贊.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統計了他們某一天的步數,數據整理如下:
| ||||||
| 5 | 20 | 50 | 15 | 5 | 5 |
(1)根據表中數據,在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;
(2)利用分層抽樣的方法,從步數在(萬步)中抽取7人,再從這7人中隨機抽取2人,求步數在
(萬步)的人恰有1人的概率;
(3)這100名用戶中,的用戶為男生,這些男生的步數超過1.2萬步的人為20人,是否有
的把握認為運動步數超過1.2萬步與性別有關?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數記為
,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后
與
的函數圖象.
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在四邊形中,
,
,
,
.把
沿著
翻折至
的位置,
平面
,連結
,如圖2.
(1)當時,證明:平面
平面
;
(2)當三棱錐的體積最大時,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
的右焦點為
,過
的直線
與
相交于
兩點,點
滿足
.
(1)當的傾斜角為
時,求直線
的方程;
(2)試探究在軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com