已知函數.
(1)試問該函數能否在處取到極值?若有可能,求實數
的值;否則說明理由;
(2)若該函數在區間上為增函數,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
設函數,其中
為常數.
(Ⅰ)當時,判斷函數
在定義域上的單調性;
(Ⅱ)當時,求
的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數,不等式
都成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(1)當且
時,證明:對
,
;
(2)若,且
存在單調遞減區間,求
的取值范圍;
(3)數列,若存在常數
,
,都有
,則稱數列
有上界。已知
,試判斷數列
是否有上界.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(
)
(1)若函數存在極值點,求實數b的取值范圍;
(2)求函數的單調區間;
(3)當且
時,令
,
(
),
(
)為曲線y=
上的兩動點,O為坐標原點,能否使得
是以O為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數的圖像過坐標原點
,且在點
處的切線的斜率是
.
(1)求實數的值;
(2)求在區間
上的最大值;
(3)對任意給定的正實數,曲線
上是否存在兩點
,使得
是以
為
直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com