【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,研究鮭魚的科學家發現鮭魚的游速(單位:
)與其耗氧量單位數
之間的關系可以表示為函數
,其中
為常數,已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為
時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數
之間的函數解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
【答案】(1),
;(2)24300
【解析】試題分析 :(1)由,可得
,
.
(2)由題,解得:
,故其耗氧量至多需要24300個單位.
試題解析:(1)由題意,得,
解得: ,
.
∴游速與其耗氧量單位數
之間的函數解析式為
.
(2)由題意,有,即
,
∴
由對數函數的單調性,有,解得:
,
∴當一條鮭魚的游速不高于時,其耗氧量至多需要24300個單位.
點晴:解決函數模型應用的解答題,還有以下幾點容易造成失分:①讀不懂實際背景,不能將實際問題轉化為函數模型.②對涉及的相關公式,記憶錯誤.③在求解的過程中計算錯誤.另外需要熟練掌握求解方程、不等式、函數最值的方法,才能快速正確地求解.含有絕對值的問題突破口在于分段去絕對值,分段后在各段討論最值的情況.
科目:高中數學 來源: 題型:
【題目】已知函數,
,設
(其中
表示
中的較小者).
(1)在坐標系中畫出函數的圖像;
(2)設函數的最大值為
,試判斷
與1的大小關系,并說明理由.
(參考數據: ,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解適齡公務員對開放生育二胎政策的態度,某部門隨機調查了90位三十歲到四十歲的公務員,得到如下列聯表,因不慎丟失部分數據.
(1)完成表格數據,判斷是否有99%以上的把握認為“生二胎意愿與性別有關”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯,該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設邀請的2人中來自省婦聯的人數為X,求X的分布列及數學期望E(X).
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高二年級期末考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據相關信息回答下列問題:
(1)求a,b的值,并畫出頻率分布直方圖;
(2)統計方法中,同一組數據常用該組區間的中點值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數在[60,80)內學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人的分數在[70,80)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了普及環保知識,增強環保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環保知識測試.
(Ⅰ)根據題目條件完成下面2×2列聯表,并據此判斷是否有99%的把握認為環保知識成績優秀與學生的文理分類有關.
優秀人數 | 非優秀人數 | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅱ)現已知A,B,C三人獲得優秀的概率分別為 ,設隨機變量X表示A,B,C三人中獲得優秀的人數,求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種商品的市場需求量(萬件)、市場供應量
(萬件)與市場價格
(元/件)分別近似地滿足下列關系:
,
.當
時的市場價格稱為市場平衡價格,此時的需求量稱為平衡需求量.
(1)求平衡價格和平衡需求量;
(2)若該商品的市場銷售量(萬件)是市場需求量
和市場供應量
兩者中的較小者,該商品的市場銷售額
(萬元)等于市場銷售量
與市場價格
的乘積.
①當市場價格取何值時,市場銷售額
取得最大值;
②當市場銷售額取得最大值時,為了使得此時的市場價格恰好是新的市場平衡價格,則政府應該對每件商品征稅多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為的函數
是奇函數
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數在定義域上的單調性;
(Ⅲ)若對任意的,不等式
恒成立,求實數
的取值范圍;
(Ⅳ)設關于的函數
有零點,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com