【題目】下列判斷正確的是 . (填寫所有正確的序號) ①若sinx+siny= ,則siny﹣cos2x的最大值為
;
②函數y=sin(2x+ )的單調增區間是[kπ﹣
,kπ+
],k∈Z;
③函數f(x)= 是奇函數;
④函數y=tan ﹣
的最小正周期是π.
【答案】④
【解析】解:①若sinx+siny= ,可得siny=
﹣sinx∈[﹣1,1],
解得﹣ ≤sinx≤1,則siny﹣cos2x=
﹣sinx﹣(1﹣sin2x)=(sinx﹣
)2﹣
,
當sinx=﹣ 時,取得最大值為
,故①錯;②由2kπ﹣
≤2x+
≤2kπ+
,可得kπ﹣
≤x≤kπ+
,k∈Z,
函數y=sin(2x+ )的單調增區間是[kπ﹣
,kπ+
],k∈Z,故②錯;③函數f(x)=
,可得1+sinx+cosx≠0,即為
sin(x+
)≠﹣1,
即有x+ ≠2kπ+
且x+
≠2kπ+
,即為x≠2kπ+π且x≠2kπ+
,
則定義域不關于原點對稱,f(x)為非奇非偶函數,故③錯;④y=tan ﹣
=
﹣
=
=﹣
=﹣
,∴T=π.故④對.
所以答案是:④.
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內的圖象時,列表并填入了部分數據,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 2 | ﹣2 | 0 |
(1)請將上表數據補充完整,并直接寫出函數f(x)的解析式;
(2)將函數y=f(x)的圖象向左平移 個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一個幾何體的三視圖及其尺寸(單位:cm),則該幾何體的表面積和體積分別為( )
A.24πcm2 , 12πcm3
B.15πcm2 , 12πcm3
C.24πcm2 , 36πcm3
D.15πcm2 , 36πcm3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓C: +
=1(a>b>0)的離心率為
,其左焦點到點P(2,1)的距離為
. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點.求證:直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對一批產品的長度(單位:mm)進行抽樣檢測,下圖為檢測結果的頻率分布直方圖.根據標準,產品長度在區間[20,25)上的為一等品,在區間[15,20)和區間[25,30)上的為二等品,在區間[10,15)和[30,35)上的為三等品.用頻率估計概率,現從該批產品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉過程中的一個圖形,有下列命題: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′﹣DEF的體積最大值為 a3;
④動點A′在平面ABC上的射影在線段AF上;
⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
其中正確的命題是(寫出所有正確命題的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數y=f(x)一定是偶函數;②函數y=f(x)可能是奇函數;③函數y=f(x)在(0,a)上單調遞增④若函數y=f(x)是偶函數,則其值域為(a2 , 1)其中正確的命題個數為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面是被嚴重破壞的頻率分布表和頻率分布直方圖,根據殘表和殘圖,則 p= , q= .
分數段 | 頻數 | |
[60,70) | p | |
[70,80) | 90 | |
[80,90) | 60 | |
[90,100] | 20 | q |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com