【題目】某工廠制作仿古的桌子和椅子,需要木工和漆工兩道工序.已知生產一把椅子需要木工4個工作時,漆工2個工作時;生產一張桌子需要木工8個工作時,漆工1個工作時.生產一把椅子的利潤為1500元,生產一張桌子的利潤為2000元.該廠每個月木工最多完成8000個工作時、漆工最多完成1300個工作時.根據以上條件,該廠安排生產每個月所能獲得的最大利潤是__________元.
【答案】2100000
【解析】
設每天生產桌子張,椅子
張,利潤總額為
,目標函數為
,則
作出可行域,把直線
向右上方平移至
的位置時,直線經過可行域上的點
,此時
取最大值,解方程
得
坐標為
,
,所以每天應生產桌子
張,椅子
張才能獲得最大利潤,最大利潤為
,故答案為
.
【方法點晴】本題主要考查利用線性規劃解決現實生活中的最佳方案及最大利潤問題,屬于難題題. 求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.
科目:高中數學 來源: 題型:
【題目】某學校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制,已知高三學生的原始成績均分布在內,發布成績使用等級制,各等級劃分標準見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學生安全教育學習情況,從中抽取了名學生的原始成績作為樣本進行統計,按照
的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優秀的有3人.
(1)求和頻率分布直方圖中的
的值;
(2)根據樣本估計總體的思想,以事件發生的頻率作為相應事件發生的概率,若該校高三學生共1000人,求競賽等級在良好及良好以上的人數;
(3)在選取的樣本中,從原始成績在80分以上的學生中隨機抽取2名學生進行學習經驗介紹,求抽取的2名學生中優秀等級的學生恰好有1人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F1,F2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且
.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=
|NF1|=…=a。類似地:P是橢圓
(a>b>0,xy≠0)上的動點,F1,F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且
,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了讓學生了解環保知識,增強環保意識,某中學舉行了一次“環保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統計.請你根據尚未完成并有局部污損的頻率分布表和頻數分布直方圖,解答下列問題:
分組 | 頻數 | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 | 50 |
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內);
(Ⅱ)補全頻數條形圖;
(Ⅲ)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市小型機動車駕照“科二”考試中共有5項考察項目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學員“科二”模擬考試成績進行統計(如圖1所示),并打算從恰有2項成績不合格的學員中任意抽出2人進行補測(只測不合格的項目),求補測項目種類不超過3項的概率;
(2)如圖2,某次模擬演練中,教練要求學員甲倒車并轉向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛入指定的停車位. 根據經驗,學員甲轉向90°后可使車尾邊緣完全落在線段CD,且位于CD內各處的機會相等.若CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學員甲能按教練要求完成任務的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com