【題目】冬季歷來是交通事故多發期,面臨著貨運高危運行、惡劣天氣頻發、包車客運監管漏洞和農村交通繁忙等四個方面的挑戰.全國公安交管部門要認清形勢、正視問題,針對近期事故暴露出來的問題,強薄羽、補短板、堵漏洞,進一步推動五大行動,鞏固擴大五大行動成果,全力確保冬季交通安全形勢穩定.據此,某網站推出了關于交通道路安全情況的調查,通過調查年齡在的人群,數據表明,交通道路安全仍是百姓最為關心的熱點,參與調查者中關注此類問題的約占80%.現從參與調查并關注交通道路安全的人群中隨機選出100人,并將這100人按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求這100人年齡的樣本平均數(同一組數據用該區間的中點值作代表)和中位數(精確到小數點后一位);
(2)現在要從年齡較大的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人進行問卷調查,求第2組恰好抽到1人的概率;
科目:高中數學 來源: 題型:
【題目】(1)若動點到定點
的距離與到定直線
:
的距離之比為
,求證:動點
的軌跡是橢圓;
(2)設(1)中的橢圓短軸的上頂點為,試找出一個以點
為直角頂點的等腰直角三角形
,并使得
、
兩點也在橢圓上,并求出
的面積;
(3)對于橢圓(常數
),設橢圓短軸的上頂點為
,試問:以點
為直角頂點,且
、
兩點也在橢圓上的等腰直角三角形
有幾個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓C的“相關圓”E為:
.若拋物線
的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關圓”E的方程;
(2)過“相關圓”E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:
為定值(
為坐標原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】冬季歷來是交通事故多發期,面臨著貨運高危運行、惡劣天氣頻發、包車客運監管漏洞和農村交通繁忙等四個方面的挑戰.全國公安交管部門要認清形勢、正視問題,針對近期事故暴露出來的問題,強薄羽、補短板、堵漏洞,進一步推動五大行動,鞏固擴大五大行動成果,全力確保冬季交通安全形勢穩定.據此,某網站推出了關于交通道路安全情況的調查,通過調查年齡在的人群,數據表明,交通道路安全仍是百姓最為關心的熱點,參與調查者中關注此類問題的約占80%,現從參與調查并關注交通道路安全的人群中隨機選出100人,并將這100人按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求這100人年齡的樣本平均數(同一組數據用該區間的中點值作代表)和中位數(精確到小數點后一位);
(2)現在要從年齡較大的第4,5組中用分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行問卷調查,求第4組恰好抽到2人的概率;
(3)若從所有參與調查的人(人數很多)中任意選出3人,設其中關注交通道路安全的人數為隨機變量X,求X的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
是兩條不同直線,
,
是兩個不同平面,給出下列四個命題:
①若,
垂直于同一平面,則
與
平行;
②若,
平行于同一平面,則
與
平行;
③若,
不平行,則在
內不存在與
平行的直線;
④若,
不平行,則
與
不可能垂直于同一平面
其中真命題的個數為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com