精英家教網 > 高中數學 > 題目詳情

如果對任意實數x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

(1) f(2)=4   f(3)=8   f(4)=16   (2)2014

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h=AB,tan∠FED=,設AB=xm,BC=ym.
 
(1)求y關于x的表達式;
(2)如何設計x、y的長度,才能使所用材料最少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數關系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

計算
(1);
(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是偶函數.
(1)求的值;
(2)設,若函數的圖象有且只有一個公共點,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2bxc(bc∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2;
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=的圖象過原點,且關于點(-1,2)成中心對稱.
(1)求函數f(x)的解析式;
(2)若數列{an}滿足a1=2,an+1f(an),試證明數列為等比數列,并求出數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

現有A,B兩個投資項目,投資兩項目所獲得利潤分別是(萬元),它們與投入資金(萬元)的關系依次是:其中平方根成正比,且當為4(萬元)時為1(萬元),又成正比,當為4(萬元)時也是1(萬元);某人甲有3萬元資金投資.
(1)分別求出,的函數關系式;
(2)請幫甲設計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場經營一批進價是30元/件的商品,在市場試銷中發現,此商品銷售價元與日銷售量件之間有如下關系:

x
 
45
 
50
 
y
 
27
 
12
 
(I)確定的一個一次函數關系式;
(Ⅱ)若日銷售利潤為P元,根據(I)中關系寫出P關于的函數關系,并指出當銷售單價為多少元時,才能獲得最大的日銷售利潤?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视