精英家教網 > 高中數學 > 題目詳情

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數關系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?

(1)1   (2) 12分鐘

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1)設,,,證明:在區間內存在唯一的零點;
(2)設,若對任意,有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

作函數的y= [3(x+1)]圖.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=1-2ax-a2x(a>1).
(1)求函數f(x)的值域;
(2)若x∈[-2,1]時,函數f(x)的最小值是-7,求a的值及函數f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數:,其中是儀器的月產量.
(注:總收益=總成本+利潤)
(1)將利潤表示為月產量的函數;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩函數f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k為實數.
(1)對任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范圍.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范圍.
(3)對任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-x+log2.
(1)求f()+f(-)的值.
(2)當x∈(-a,a],其中a∈(0,1),a是常數時,函數f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如果對任意實數x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數f(x)對任意的實數x1,x2D,均有|f(x2)-f(x1)|≤|x2x1|,則稱函數f(x)是區間D上的“平緩函數”.
(1)判斷g(x)=sin xh(x)=x2x是不是實數集R上的“平緩函數”,并說明理由;
(2)若數列{xn}對所有的正整數n都有|xn+1xn|≤,設yn=sin xn,求證:|yn+1y1|<.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视