科目:高中數學 來源:學習周報 數學 北師大課標高一版(必修4) 2009-2010學年 第40期 總196期 北師大課標版 題型:044
扇子在美觀設計上,可以考慮用料、圖案和形狀,若從數學角度看,則認為符合黃金分割比例的扇子最美麗.如圖,設紙扇半徑為r,張開角為,要使紙扇面積與半徑為r,圓心角為2π-
的扇形面積的比為黃金分割比0.618,則紙扇的張開角
應為多少度?(精確到10°)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇蘇北四市高三第一次質量檢測理科數學試卷(解析版) 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇蘇北四市高三第一次質量檢測文科數學試卷(解析版) 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇鹽城第一中學高三第二學期期初檢測理科數學試卷(解析版) 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇鹽城第一中學高三第二學期期初檢測文科數學試卷(解析版) 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com