【題目】已知橢圓的中心在原點,焦點在 軸上,離心率為
,且經過點
,直線
:
交橢圓于
,
兩不同的點.
(1)求橢圓的方程;
(2)若直線 不過點
,求證:直線
,
與
軸圍成等腰三角形.
【答案】
(1)解:設橢圓方程為 ,因為
,所以
,
又橢圓過點 ,所以
,解得
,
,故橢圓的方程為
(2)解:將 代入
并整理得
,
再根據 ,求得
.
設直線 ,
斜率分別為
和
,只要證
即可.
設 ,
,則
,
,
∴
而此分式的分子等于
可得
因此 ,
與
軸所圍成的三角形為等腰三角形.
【解析】(1)根據橢圓離心率公式e=及a2=b2+c2得到a,b的關系式,將點的坐標代入橢圓方程,兩方程聯立求出a2,b2即可;(2)聯立直線方程和橢圓方程,消去y,利用二次方程根與系數關系寫出點A和點B橫坐標滿足的關系式,將kMA+kMB用 點A和點B橫坐標,只要證出kMA+kMB=0即可.
科目:高中數學 來源: 題型:
【題目】某飛機失聯,經衛星偵查,其最后出現在小島附近,現派出四艘搜救船
,為方便聯絡,船
始終在以小島
為圓心,100海里為半徑的圓上,船
構成正方形編隊展開搜索,小島
在正方形編隊外(如圖).設小島
到
的距離為
,
,
船到小島
的距離為
.
(1)請分別求關于
的函數關系式
,并分別寫出定義域;
(2)當兩艘船之間的距離是多少時搜救范圍最大(即
最大)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的 ,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是 或
作品獲得一等獎”;
乙說:“ 作品獲得一等獎”;
丙說:“ ,
兩項作品未獲得一等獎”;
丁說:“是 作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的個數為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實數根”的否命題為真命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設雙曲線 (a>0,b>0)的左焦點為F1 , 左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設PM與QN的交點為B,若B到直線PQ的距離大于a+
,則該雙曲線的離心率取值范圍是( )
A.(1﹣ )
B.( ,+∞)
C.(1,2 )
D.(2 ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的前n項和為Sn , 數列{bn}是等比數列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 .
(1)求數列{an}和{bn}的通項公式;
(2)令cn=anbn , 設數列{cn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為
,F1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2
.
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( ,
),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (
為實常數).
(1)若 ,
,求
的單調區間;
(2)若 ,且
,求函數
在
上的最小值及相應的
值;
(3)設 ,若存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com