精英家教網 > 高中數學 > 題目詳情

【題目】設數據是鄭州市普通職工個人的年收入,若這個數據的中位數為,平均數為,方差為,如果再加上世界首富的年收入,則這個數據中,下列說法正確的是( )

A.年收入平均數大大增大,中位數一定變大,方差可能不變

B.年收入平均數大大增大,中位數可能不變,方差變大

C.年收入平均數大大增大,中位數可能不變,方差也不變

D.年收入平均數可能不變,中位數可能不變,方差可能不變

【答案】B

【解析】

∵數據x1x2,x3,…,xn是鄭州普通職工n(n3,nN)個人的年收入,

xn+1為世界首富的年收入

xn+1會遠大于x1,x2x3,…,xn,

故這n+1個數據中,年收入平均數大大增大,

但中位數可能不變,也可能稍微變大,

但由于數據的集中程序也受到xn+1比較大的影響,而更加離散,則方差變大.

故選B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】.已知函數,.

(Ⅰ)求的單調區間;

(Ⅱ)已知函數的圖象在公共點(x0,y0)處有相同的切線,

(i)求證:處的導數等于0;

(ii)若關于x的不等式在區間上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列中,.

1)判斷數列是否為等比數列?并說明理由;

2)若對任意正整數恒成立,求首項的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.

(1)求動點的軌跡的方程;

(2)若點是曲線的焦點,過的兩條直線關于軸對稱,且分別交曲線,若四邊形的面積等于,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】類比三角形中的性質:(1)兩邊之和大于第三邊;(2)中位線長等于底邊的一半;(3)三內角平分線交于一點; 可得四面體的對應性質:(1)任意三個面的面積之和大于第四個面的面積;(2)過四面體的交于同一頂點的三條棱的中點的平面面積等于第四個面面積的;(3)四面體的六個二面角的平分面交于一點。其中類比推理結論正確的有 ( )

A. (1) B. (1)(2) C. (1)(2)(3) D. 都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知內角的角平分線.

(1)用正弦定理證明:

2)若,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于,與橢圓分別交于不同四點,直線的斜率滿足.已知當軸重合時,,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標并求出此定值;若不存在,說明理由.

【答案】(Ⅰ);,.

【解析】試題分析:(1)當軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標化,可得點的軌跡是橢圓,從而求得定點和點.

試題解析:軸重合時,, ,所以垂直于軸,得,, ,橢圓的方程為.

焦點坐標分別為, 當直線斜率不存在時,點坐標為;

當直線斜率存在時,設斜率分別為, , 得:

, 所以:, 則:

. 同理:, 因為

, 所以, , 由題意知, 所以

, 設,則,即,由當直線斜率不存在時,點坐標為也滿足此方程,所以點在橢圓.存在點和點,使得為定值,定值為.

考點:圓錐曲線的定義,性質,方程.

【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發,把坐標化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.

型】解答
束】
21

【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數的兩個零點為,記,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在△ABC中,角A、B、C的對邊分別是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大小;

(2)若△ABC的面積S=,求sinB+sinC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】挑選空間飛行員可以說是“萬里挑一”,要想通過需要五關:目測、初檢、復檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學都順利通過了前兩關,根據分析甲、乙、丙三位同學通過復檢關的概率分別是0.5、0.60.75,能通過文考關的概率分別是0.60.5、0.4,由于他們平時表現較好,都能通過政審關,若后三關之間通過與否沒有影響.

1)求甲被錄取成為空軍飛行員的概率;

2)求甲、乙、丙三位同學中恰好有一個人通過復檢的概率;

3)設只要通過后三關就可以被錄取,求錄取人數的分布列.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视