精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱柱,平面,,,的中點。

(1)求證:平面;

(2)若,求二面角的余弦值;

(3)若點在線段上,且平面,確定點的位置并求線段的長。

【答案】(1)見解析;(2);(3)見解析

【解析】

(1)連接,交于點,點的中點,的中點,求得,利用線面平行的判定定理,即可得到∥平面.

(2)以為原點,分別以的方向為軸、軸、軸的正方向建立空間直角坐標系,求得平面H和平面的法向量,利用向量的夾角公式,即可求解.

(3)設,根據平面,列出方程組,即可求解.

1)連接,交于點,則點的中點,

因為的中點,所以.

平面,平面,

所以∥平面.

2)因為平面,

所以平面,又

故以為原點,分別以的方向為軸、軸、軸的正方向

建立空間直角坐標系,

,

所以

設平面的法向量為,

則有

,則得.

又平面的法向量為,且二面角為銳角,

故二面角的余弦值為

3)設因為,所以,

.

,,平面,

所以 解得

所以,且點在線段的三等分點處,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數據的中心點();

②回歸直線就是散點圖中經過樣本數據點最多的那條直線;

③當相關性系數時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數就越接近于

其中真命題的個數為( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋數學家楊輝1261年所著的《詳解九章算法》一書里出現了如圖所示的表,即楊輝三角,這是數學史上的一個偉大成就.在“楊輝三角”中,若去除所有為1的項,依次構成數列23,34,6,4,5,10,105,…,則此數列的前56項和為(

A.2060B.2038C.4084D.4108

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為拋物線的焦點,,是橢圓上的兩個動點,且線段長度的最大值為4.

(1)求橢圓的標準方程;

(2)若,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系的極坐標方程為,直線l的參數方程為,(其中為參數)直線l與交于A,B兩個不同的點.

求傾斜角的取值范圍;

求線段AB中點P的軌跡的參數方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社區消費者協會為了解本社區居民網購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網購消費金額(單位:千元),網購次數和支付方式等進行了問卷調查.經統計這100位居民的網購消費金額均在區間內,按分成6組,其頻率分布直方圖如圖所示.

1)估計該社區居民最近一年來網購消費金額的中位數;

2)將網購消費金額在20千元以上者稱為網購迷,補全下面的列聯表,并判斷有多大把握認為網購迷與性別有關系

總計

網購迷

20

非網購迷

45

總計

100

附:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然對數的底數),的導函數.

(Ⅰ)當時,求證;

(Ⅱ)是否存在正整數,使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為4.

(1)求橢圓的方程;

(2)過點作兩條直線,分別交橢圓兩點(異于),當直線的斜率之和為4時,直線恒過定點,求出定點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视