精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的焦點為,平行于軸的兩條直線分別交兩點,交的準線于兩點 .

(1)若在線段上,的中點,證明

(2)若的面積是的面積的兩倍,求中點的軌跡方程.

【答案】(1)證明見解析;(2)

【解析】

試題分析:的方程為

.(1)由在線段,又 ;(2)設軸的交點為 (舍去),.設滿足條件的的中點為.當軸不垂直時.當軸垂直時重合所求軌跡方程為

試題解析:由題設,設,則,且

記過兩點的直線為,則的方程為.............3分

(1)由于在線段上,故

的斜率為的斜率為,則

所以..................5分

(2)設軸的交點為,

由題設可得,所以(舍去),

設滿足條件的的中點為

軸不垂直時,由可得

,所以

軸垂直時,重合,所以,所求軌跡方程為 .........12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正三棱柱(側棱垂直于底面,且底面是正三角形)中,是棱上一點.

(1)若分別是的中點,求證:平面;

(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區間;

(2)證明當時,關于的不等式恒成立;

(3)若正實數滿足,證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)設函數,其中,曲線過點,且在點處的切線方程為

I)求的值;

II)證明:當時,;

III)若當時,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數在區間不單調,求實數的取值范圍;

(2)當時,不等式恒成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數據作了初步處理,得到下面的散點圖及一些統計量的值.

表中,.

(1)根據散點圖判斷, 哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程;

(3)已知這種產品的年利潤、的關系為.根據(2)的結果要求:年宣傳費為何值時,年利潤最大?

附:對于一組數據, ,…, 其回歸直線的斜率和截距的最小二乘估計分別為, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1,E、F分別是BB1CD的中點.

()證明:ADD1F;

()AED1F所成的角;

()證明:面AEDA1FD1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若曲線處的切線的方程為,求實數的值;

(2)設,若對任意兩個不等的正數,都有恒成立,求實數的取值范圍;

(3)若在上存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,當時,的圖象在處的切線相同.

(1)求的值;

(2)令,若存在零點,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视