【題目】金磚國家領導人第九次會晤于2017年9月3日至5日在中國福建廈門市舉行,為了在金磚峰會期間為來到廈門的外國嘉賓提供服務,培訓部對兩千余名志愿者進行了集中培訓,為了檢驗培訓效果,現培訓部從兩千余名志愿者中隨機抽取100名,按年齡(單位:歲)分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者前去機場參加接待外賓禮儀測試,則應從第3,4,5組中各抽取多少名志愿者?
(2)在(1)的條件下,若在第3,4組的志愿者中隨機抽取2名志愿者介紹接待外賓經驗感受,求第4組至少有1名志愿者被抽中的概率.
【答案】(1)應從第3,4,5組中分別抽取3名,2名,1名志愿者; (2).
【解析】試題分析:(1)現有頻率分布直方圖,求得第組的頻數,再利用分層抽樣的方法得到結果;
(2)根據古典概型的概率計算公式,即可求解第4組至少有1名志愿者的概率.
試題解析:
(1)第3組的人數為,
第4組的人數為
第5組的人數為.
因為第3,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志愿者中抽,56名志愿者,每組抽取的人數分別為,第3組: ,第4組:
,第5組:
.
所以應從第3,4,5組中分別抽取3名,2名,1名志愿者.
(2)記第3組的3名志愿者分別為,
,
,第4組的2名志愿者分別為
,
,則從透明志愿者中抽取2名志愿者的情況有
,
,
,
,
,
,
,
,
,
,共10種.
其中第4組的2名志愿者,
至少有1名被抽中的情況有
,
,
,
,
,
,
,共7種.
所以第4組至少有1名志愿者被抽中的概率為.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx和g(x)=m(x2-1)(m∈R).
(1)m=1時,求方程f(x)=g(x)的實根;
(2)若對任意的x∈(1,+∞),函數y=g(x)的圖象總在函數y=f(x)圖象的上方,求m的取值范圍;
(3)求證: +
+…+
>ln(2n+1) (n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四邊形 的四個頂點在橢圓
:
上,對角線
所在直線的斜率為
,且
,
.
(1)當點為橢圓
的上頂點時,求
所在直線方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在歲之間的100人進行調查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區間為:
,
,
,
,
,
.把年齡落在區間
和
內的人分別稱為“青少年”和“中老年”.
(1)根據頻率分布直方圖求樣本的中位數(保留兩位小數)和眾數
(2)根據已知條件完成下面的2×2列聯表,并判斷能否有99%的把握認為關注“帶一路”是否和年齡段有關?
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查, 經統計“青少年”與“中老年”的人數之比為9:11
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據已知條件完成上面的列聯表,并判斷能否有
的把握認為關注“一帶一路”是否和年齡段有關?
(2)現從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數為X,求X的分布列及數學期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com