【題目】某市近郊有一塊大約的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設如圖所示的一個矩形場地,其中總面積為3000平方米,其中陰影部分為通道,通道寬度為2米,中間的三個矩形區域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為
平方米.
(1)分別用表示
和
的函數關系式,并給出定義域;
(2)怎樣設計能使取得最大值,并求出最大值.
科目:高中數學 來源: 題型:
【題目】為了響應國家號召,某校組織部分學生參與了“垃圾分類,從我做起”的知識問卷作答,并將學生的作答結果分為“合格”與“不合格”兩類與“問卷的結果”有關?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認為“性別”與“問卷的結果”有關?
(2)在成績合格的學生中,利用性別進行分層抽樣,共選取9人進行座談,再從這9人中隨機抽取5人發送獎品,記拿到獎品的男生人數為X,求X的分布列及數學期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】體溫是人體健康狀況的直接反應,一般認為成年人腋下溫度T(單位:)平均在
之間即為正常體溫,超過
即為發熱.發熱狀態下,不同體溫可分成以下三種發熱類型:低熱:
;高熱:
;超高熱(有生命危險):
.某位患者因患肺炎發熱,于12日至26日住院治療.醫生根據病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱.住院期間,患者每天上午8:00服藥,護士每天下午16:00為患者測量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫( | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫( | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(I)請你計算住院期間該患者體溫不低于的各天體溫平均值;
(II)在19日—23日期間,醫生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目“a項目”的檢查,記X為高熱體溫下做“a項目”檢查的天數,試求X的分布列與數學期望;
(III)抗生素治療一般在服藥后2-8個小時就能出現血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設三種抗生素治療效果相互獨立,請依據表中數據,判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓
:
的左、右焦點分別為
,
,點
在橢圓
上.
(1)若,點
的坐標為
,求橢圓
的方程;
(2)若點橫坐標為
,點
為
中點,且
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個口袋內有個不同的紅球,
個不同的白球,
(1)從中任取個球,紅球的個數不比白球少的取法有多少種?
(2)若取一個紅球記分,取一個白球記
分,從中任取
個球,使總分不少于
分的取法有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,上頂點為
,
的面積為1,且橢圓
的離心率為
.
(1)求橢圓的標準方程;
(2)點在橢圓上且位于第二象限,過點
作直線
,過點
作直線
,若直線
的交點
恰好也在橢圓
上,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某大學學生在周日上網的時間,隨機對名男生和
名女生進行了不記名的問卷調查,得到了如下的統計結果:
表1:男生上網時間與頻數分布表:
上網時間(分鐘) | |||||
人數 | 5 | 25 | 30 | 25 | 15 |
表2:女生上網時間與頻數分布表:
上網時間(分鐘) | |||||
人數 | 10 | 20 | 40 | 20 | 10 |
(1)若該大學共有女生人,試估計其中上網時間不少于
分鐘的人數;
(2)完成表3的列聯表,并回答能否有
的把握認為“學生周日上網時間與性別有關”?
(3)從表3的男生中“上網時間少于分鐘”和“上網時間不少于
分鐘”的人數中用分層抽樣的方法抽取一個容量為
的樣本,再從中任取兩人,求至少有一人上網時間超過
分鐘的概率.表3:
上網時間少于60分鐘 | 上網時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:,其中
,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列、
,其中,
,數列
滿足
,
,數列
滿足
.
(1)求數列、
的通項公式;
(2)是否存在自然數,使得對于任意
有
恒成立?若存在,求出
的最小值;
(3)若數列滿足
,求數列
的前
項和
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com