【題目】將圓 為參數)上的每一點的橫坐標保持不變,縱坐標變為原來的
倍,得到曲線C.
(1)求出C的普通方程;
(2)設直線l:x+2y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系, 求過線段P1P2的中點且與l垂直的直線的極坐標方程.
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中,a1=1,且a1 , a2 , a4+2成等比數列.
(1)求數列{an}的通項公式及其前n項和Sn;
(2)設 ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率為
,且橢圓C上的點到橢圓右焦點F的最小距離為
.
(1)求橢圓C的方程;
(2)過點F且不與坐標軸平行的直線l與橢圓C交于A,B兩點,線段AB的中點為M, O為坐標原點,直線 的斜率分別為
若成等差數列,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市需對某環城快速車道進行限速,為了調研該道路車速情況,于某個時段隨機對 輛車的速度進行取樣,測量的車速制成如下條形圖:
經計算:樣本的平均值 ,標準差
,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現規定車速小于
或車速大于
是需矯正速度.
(1)從該快速車道上所有車輛中任取 個,求該車輛是需矯正速度的概率;
(2)從樣本中任取
個車輛,求這
個車輛均是需矯正速度的概率
(3)從該快速車道上所有車輛中任取 個,記其中是需矯正速度的個數為
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地電影院為了了解當地影迷對快要上映的一部電影的票價的看法,進行了一次調研,得到了票價x(單位:元)與渴望觀影人數y(單位:萬人)的結果如下表:
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(2)根據(1)中求出的線性回歸方程,若票價定為70元,預測該電影院渴望觀影人數.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數列{an}及{bn}的通項公式;
(Ⅱ)設數列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設D為不等式組 ,表示的平面區域,點B(a,b)為第一象限內一點,若對于區域D內的任一點A(x,y)都有
成立,則a+b的最大值等于( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com