【題目】選修4-4;坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸正半軸為極軸的極坐標中,曲線
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程.
(Ⅱ)求曲線上的點到直線
的距離的最大值.
【答案】(1),
(2)
【解析】試題分析: (Ⅰ) 消去得直線
的普通方程為
. 由極坐標與直角坐標互化公式
,可得曲線
的直角坐標方程為
, 即
.
(Ⅱ) 設曲線上的點為
,
則點到直線
的距離為
當
時,
, 可得曲線
上的點到直線
的距離的最大值為
.
試題解析:
(Ⅰ) 由 消去
得
,
所以直線的普通方程為
.
由,
得.
將代入上式,
得曲線的直角坐標方程為
, 即
.
(Ⅱ) 法1:設曲線上的點為
,
則點到直線
的距離為
當時,
,
所以曲線上的點到直線
的距離的最大值為
.
法2: 設與直線平行的直線為
,
當直線與圓
相切時, 得
,
解得或
(舍去),
所以直線的方程為
.
所以直線與直線
的距離為
.
所以曲線上的點到直線
的距離的最大值為
.
科目:高中數學 來源: 題型:
【題目】某居民小區要建造一座八邊形的休閑小區,它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構成的,是面積為200平方米的十字形地帶.計劃在正方MNPQ上建一座花壇,造價是每平方米4 200元,在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價是每平方米210元,再在四個空角上鋪上草坪,造價是每平方米80元.
(1)設總造價是S元,AD長為x米,試建立S關于x的函數關系式;
(2)當x為何值時,S最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,設函數
.
(1)若函數的圖象關于直線
對稱,且
時,求函數
的單調增區間;
(2)在(1)的條件下,當時,函數
有且只有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點,它的直觀圖,正視圖,側視圖如圖所示.
(1)求EF與平面ABCD所成角的大小;
(2)求二面角B-PA-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運
會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5.
(1)求數列{bn}的通項公式;
(2)數列{bn}的前n項和為Sn,求證:數列是等比數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com