【題目】已知向量,
,設函數
.
(1)若函數的圖象關于直線
對稱,且
時,求函數
的單調增區間;
(2)在(1)的條件下,當時,函數
有且只有一個零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前三項與數列{bn}的前三項相同,且a1+2a2+22a3+…+2n-1an=8n對任意n∈N*都成立,數列{bn+1-bn}是等差數列.
(1)求數列{an}與{bn}的通項公式;
(2)是否存在k∈N*,使得(bk-ak)∈(0,1)?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】生活經驗告訴我們,當水注進容器(設單位時間內進水量相同)時,水的高度隨著時間的變化而變化,在下圖中請選擇與容器相匹配的圖像,A對應________;B對應________;C對應________;D對應________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年1月1日,作為貴陽市打造“千園之城”27個示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設置了水上挑戰項目向全體市民開放.現從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調查,統計出100名市民中愿意接受挑戰和不愿意接受挑戰的男女生比例情況,具體數據如圖表:
(1)根據條件完成下列列聯表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰與性別有關?
愿意 | 不愿意 | 總計 | |
男生 | |||
女生 | |||
總計 |
(2)現用分層抽樣的方法從愿意接受挑戰的市民中選取7名挑戰者,再從中抽取2人參加挑戰,求抽取的2人中至少有一名男生的概率.
參考數據及公式:
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面
的距離
(2)在線段上是否存在一點
,使
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網絡購物已經成為一種時尚,電商們為了提升知名度,加大了在媒體上的廣告投入.經統計,近五年某電商在媒體上的廣告投入費用x(億元)與當年度該電商的銷售收入y(億元)的數據如下表:):
年份 | 2012年 | 2013年 | 2014 | 2015 | 2016 |
廣告投入x | 0.8 | 0.9 | 1 | 1.1 | 1.2 |
銷售收入y | 16 | 23 | 25 | 26 | 30 |
(1)求y關于x的回歸方程; (2)2017年度該電商準備投入廣告費1.5億元,
利用(1)中的回歸方程,預測該電商2017年的銷售收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,選用數據:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4;坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸正半軸為極軸的極坐標中,曲線
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程.
(Ⅱ)求曲線上的點到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(-2,2),函數g(x)=f(x-1)+f(3-2x).
(1)求函數g(x)的定義域;
(2)若f(x)是奇函數,且在定義域上單調遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com