精英家教網 > 高中數學 > 題目詳情
(本題滿分12分)
函數
(1)若f(-1)=0,并對恒有,求的表達式;
(2)在(1)的條件下,對,=—kx是單調函數,求k的范圍。
f(x)=x2+2x+1,
解:(1)由 f(-1)=0得a-b+1=0
又因為對恒有,⊿=b2-4a≤0,得(a+1)2-4a≤0, (a-1)2≤0,
所以a="1   " b="2 " 得  f(x)=x2+2x+1
(2)=—kx= x2+(2-k)x+1是單調函數,則
,所以得
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

若二次函數的圖象與x軸有兩個不同的交點、,且,試問該二次函數的圖象由的圖象向上平移幾個單位得到?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題10分) 已知函數.
(1)討論在區間上的單調性,并證明你的結論;
(2)當時,求的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分)已知二次函數f(x)滿足條件:.    
(1)求;
(2)討論的解的個數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知a,bc是實數,函數f(x)=ax2+bx+c,g(x)=ax+b,當-1≤x≤1時|f(x)|≤1。
(1)證明: |c|≤1;
(2)證明:當-1 ≤x≤1時,|g(x)|≤2;
(3)設a>0,有-1≤x≤1時,g(x)的最大值為2,求f(x)。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.若函數在區間上為減函數,則實數的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖像關于直線x=1對稱的充要條件是       (   )
A.m="-2"B.m="2"C.m="-1"D.m=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

的圖象開口向上,且頂點在第二象限,則的圖象大概是:
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知二次函數的圖像經過點,且點M在軸的下方,
(1)求證:的圖像與軸交于不同的兩點;
(2)設的圖像與軸交于點,求證:介于之間。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视