【題目】若定義在上的函數
滿足條件:存在實數
且
,使得:
⑴ 任取,有
(
是常數);
⑵ 對于內任意
,當
,總有
.
我們將滿足上述兩條件的函數稱為“平頂型”函數,稱
為“平頂高度”,稱
為“平頂寬度”.根據上述定義,解決下列問題:
(1)函數是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2) 已知是“平頂型”函數,求出
的值.
(3)對于(2)中的函數,若
在
上有兩個不相等的根,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x+1,數列{an}滿足an=f(n)(n∈N*),數列{bn}的前n項和為Tn , 且b1=2,Tn=bn+1﹣2(n∈N).
(1)分別求{an},{bn}的通項公式;
(2)定義x=[x]+(x),[x]為實數x的整數部分,(x)為小數部分,且0≤(x)<1.記cn= ,求數列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,錯誤的命題個數有( )
①是
為奇函數的必要非充分條件;
②函數是偶函數;
③函數的最小值是
;
④函數的定義域為
,且對其內任意實數
、
均有:
,則
在
上是減函數.
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)
某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側面的長度x不得超過米,房屋正面的造價為400元/m2,房屋側面的造價為150元/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.
(1)把房屋總造價表示成
的函數,并寫出該函數的定義域.
(2)當側面的長度為多少時,總造價最底?最低總造價是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知O為坐標原點,點A、B的坐標分別為(1,1)、(﹣3,3).若動點P滿足 ,其中λ、μ∈R,且λ+μ=1,則點P的軌跡方程為( )
A.x﹣y=0
B.x+y=0
C.x+2y﹣3=0
D.(x+1)2+(y﹣2)2=5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】司機在開機動車時使用手機是違法行為,會存在嚴重的安全隱患,危及自己和他人的生命.為了研究司機開車時使用手機的情況,交警部門調查了100名機動車司機,得到以下統計:在55名男性司機中,開車時使用手機的有40人,開車時不使用手機的有15人;在45名女性司機中,開車時使用手機的有20人,開車時不使用手機的有25人.
(Ⅰ)完成下面的2×2列聯表,并判斷是否有99.5%的把握認為開車時使用手機與司機的性別有關;
開車時使用手機 | 開車時不使用手機 | 合計 | |
男性司機人數 | |||
女性司機人數 | |||
合計 |
(Ⅱ)以上述的樣本數據來估計總體,現交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數為X,若每次抽檢的結果都相互獨立,求X的分布列和數學期望E(X).
參考公式與數據: ,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數表,并稱之為“開方作法本源”圖.下列數表的構造思路就源于“楊輝三角”.該表由若干行數字組成,從第二行起,每一行中的數字均等于其“肩上”兩數之和,表中最后一行僅有一個數,則這個數是( )
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知有限集,如果
中元素
滿足
,就稱
為“完美集”.
①集合不是“完美集”;
②若、
是兩個不同的正數,且
是“完美集”,則
、
至少有一個大于2;
③二元“完美集”有無窮多個;
④若,則“完美集”
有且只有一個,且
;
其中正確的結論是________(填上你認為正確的所有結論的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com