精英家教網 > 高中數學 > 題目詳情

下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.

x
3
4
5
6
y
2.5
3
4
4.5
(1)請畫出上表數據的散點圖.
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程=bx+a.
(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)

(1) 如圖

(2) =0.7x+0.35    (3) 19.65

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某企業有兩個分廠生產某種零件,按規定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:
甲廠:

分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙廠:
分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)試分別估計兩個分廠生產的零件的優質品率;
(2)由以上統計數據填下面2×2列聯表,并問是否有99%的把握認為“兩個分廠生產的零件的質量有差異”?
 
 
甲廠
 
乙廠
 
合計
 
優質品
 
 
 
 
 
 
 
非優質品
 
 
 
 
 
 
 
合 計
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關.現采用分層抽樣的方法,從中抽取了100名工人,先統計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產件數分成5組:,,,,分別加以統計,得到如圖所示的頻率分布直方圖.


(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成的列聯表,并判斷是否有的把握認為“生產能手與工人所在的年齡組有關”?

附表:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩位學生參加數學競賽培訓,在培訓期間,他們參加的次預賽成績記錄如下: 
甲                    乙               
(1)用莖葉圖表示這兩組數據;
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)①求甲、乙兩人的成績的平均數與方差,②若現要從中選派一人參加數學競賽,
根據你的計算結果,你認為選派哪位學生參加合適?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

衡水某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數)
3
6
11
18
12
乙班
(人數)
4
8
13
15
10
現規定平均成績在80分以上(不含80分)的為優秀.
(1)試分別估計兩個班級的優秀率.
(2)由以上統計數據填寫下面2×2列聯表,并判斷“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”是否有幫助?
 
優秀人數
非優秀人數
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數據:K2=,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為調查甲、乙兩校高三年級學生某次聯考數學成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學生,以他們的數學成績(百分制)作為樣本,樣本數據的莖葉圖如圖.

(1)若甲校高三年級每位學生被抽取的概率為0.05,求甲校高三年級學生總人數,并估計甲校高三年級這次聯考數學成績的及格率(60分及60分以上為及格);
(2)設甲、乙兩校高三年級學生這次聯考數學平均成績分別為1,2,估計12的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩位學生參加數學競賽培訓.現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據.
(2)現要從中選派一人參加數學競賽,從穩定性的角度考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某次數學考試中,抽查了1000名學生的成績,得到頻率分布直方圖如圖所示,規定85分及其以上為優秀.

(1)下表是這次抽查成績的頻數分布表,試求正整數的值;

區間
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人數
50
a
350
300
b
(2)現在要用分層抽樣的方法從這1000人中抽取40人的成績進行分析,求抽取成績為優秀的學生人數;
(3)在根據(2)抽取的40名學生中,要隨機選取2名學生參加座談會,記其中成績為優秀的人數為X,求X的分布列與數學期望(即均值).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠生產兩種元件,其質量按測試指標劃分為:大于或等于7.5為正品,小于7.5為次品.現從一批產品中隨機抽取這兩種元件各5件進行檢測,檢測結果記錄如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污損,數據看不清,統計員只記得,且兩種元件的檢測數據的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若從被檢測的5件種元件中任取2件,求2件都為正品的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视