精英家教網 > 高中數學 > 題目詳情

【題目】2009年推出一種新型家用轎車,購買時費用萬元,每年應交保險費、養路費及汽油費共萬元,汽車的維修費為:第一年無維修費用,第二年為萬元,從第三年起,每年的維修費均比上一年增加萬元.

1)設該輛轎車使用的總費用(包括購買費用、保險、養路費、汽油及維修費)表達式;

2)這種汽車使用多少年報廢最合算即該車使用多少年,年平均費用最少)?

【答案】(1);(2).

【解析】

試題分析:根據題意分析可知,使用年的總費用包含三部分,第一部分是購買費用,固定值為萬元,第二部分是保險費用、養路費及汽油費用共萬元,第三部分是維修費用,根據題意維修用為等差數列,首,公差為,因此年的維修費用為,所以;(2)根據題意,年平均費用為,所以問題轉化為求的最小值,可以利用均值不等式求最小值.

試題解析:1)由題意得:每年的維修費構成一等差數列,的維修總費用為

萬元)………………………………3

萬元)……………………6

(2)該輛轎車使用的年平均費用為

………………………………8

萬元)……………………………………10

且僅當取等號,此時.

:這種汽車使用12年報廢最合算.…………12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知命題:直線與圓有兩個交點;命題: .

1)若為真命題,求實數的取值范圍;

2)若為真命題, 為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國男子籃球職業聯賽總決賽采用七場四勝制(即先勝四場者獲勝),進入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為,假設每場比賽的結果互相獨立,現已賽完兩場乙隊以2:0暫時領先.

(1)求甲隊獲得這次比賽勝利的概率;

(2)設比賽結束時兩隊比賽的場數為隨機變量,求隨機變量的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為常數,函數

(1)當時,求函數的最小值;

(2)若有兩個極值點,):

求實數的取值范圍;

求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中. ,.

1)求異面直線所成角的大;

2)若平面內有一經過點的曲線,該曲線上的任一動點都滿足所成角的大小恰等于所成角.試判斷曲線的形狀并說明理由;

3)在平面內,設點是(2)題中的曲線在直角梯形內部(包括邊界)的一段曲線上的動點,其中為曲線的交點.為圓心,為半徑的圓分別與梯形的邊、交于、兩點.點在曲線段上運動時,試求圓半徑的范圍及的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為上),且兩點滿足

1)求橢圓的標準方程;

2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有當點橫坐標為時,為正三角形

(1)求的方程;

(2)若直線,且 有且只有一個公共點

證明直線過定點,并求出定點坐標;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高科技企業生產產品和產品需要甲、乙兩種新型材料,生產一件產品需要甲材料1.5,乙材料1,用5個工時,生產一件產品需要甲材料0.5,乙材料0.3,用3個工時,生產一件產品的利潤為2100元,生產一件產品的利潤為900元.該企業現有甲材料150,乙材料90,則在不超過600個工時的條件下,生產產品的利潤之和的最大值為____________元.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,梯形中,,沿將梯形折起,使得平面⊥平面.

(1)證明:;

(2)求三棱錐的體積;

(3)求直線

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视