某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數;
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
科目:高中數學 來源: 題型:解答題
如圖,ABCD是正方形空地,邊長為30m,電源在點P處,點P到邊AD、AB距離分別為9m,3m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN:NE=16:9.線段MN必須過點P,端點M,N分別在邊AD,AB上,設AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數式表示AM,并寫出x的取值范圍;
(2)求S關于x的函數關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如果n件產品中任取一件樣品是次品的概率為,則認為這批產品中有
件次品。某企業的統計資料顯示,產品中發生次品的概率p與日產量n滿足
,有已知每生產一件正品可贏利a元,如果生產一件次品,非但不能贏利,還將損失
元(
).
(1)求該企業日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業日產量的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
請你設計一個包裝盒,如圖所示,是邊長為
的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得
四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,
在
上是被切去的等腰直角三角形斜邊的兩個端點,設
.
(1)若廣告商要求包裝盒側面積最大,試問
應取何值?
(2)若廣告商要求包裝盒容積最大,試問
應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數,
,
的最小值為
.
⑴求函數的解析式;
⑵設,若
在
上是減函數,求實數
的取值范圍;
⑶設函數,若此函數在定義域范圍內不存在零點,求實數
的取值范圍.[
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為米,高為
米,體積為
立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為
元(
為圓周率).
(1)將表示成
的函數
,并求該函數的定義域;
(2)討論函數的單調性,并確定
和
為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區間(0,2]上的值不小于6,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數常數
)滿足
.
(1)求出的值,并就常數
的不同取值討論函數
奇偶性;
(2)若在區間
上單調遞減,求
的最小值;
(3)在(2)的條件下,當取最小值時,證明:
恰有一個零點
且存在遞增的正整數數列
,使得
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司承建扇環面形狀的花壇如圖所示,該扇環面花壇是由以點為圓心的兩個同心圓弧
、弧
以及兩條線段
和
圍成的封閉圖形.花壇設計周長為30米,其中大圓弧
所在圓的半徑為10米.設小圓弧
所在圓的半徑為
米(
),圓心角為
弧度.
(1)求關于
的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當
為何值時,
取得最大值?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com