精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區間(0,2]上的值不小于6,求實數a的取值范圍.

(1)f(x)=x+
(2)[7,+∞)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數).
(1)若的定義域和值域均是,求實數的值;
(2)若對任意的,,總有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中.
(1)已知,求的值;
(2)若在區間恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數;
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數,不等式的解集為.
(1)求的解析式; 
(2)若函數上單調,求實數的取值范圍;
(3)若對于任意的x∈[-2,2],都成立,求實數n的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)(2011•福建)設函數f(θ)=,其中,角θ的頂點與坐標原點重合,始邊與x軸非負半軸重合,終邊經過點P(x,y),且0≤θ≤π.
(Ⅰ)若點P的坐標為,求f(θ)的值;
(Ⅱ)若點P(x,y)為平面區域Ω:上的一個動點,試確定角θ的取值范圍,并求函數f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)求函數的最小值;
(2)對一切恒成立,求實數的取值范圍;
(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經過一定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區間上的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视