已知
(1)求函數的最小值;
(2)對一切恒成立,求實數
的取值范圍;
(3)證明:對一切,都有
成立.
科目:高中數學 來源: 題型:解答題
如果n件產品中任取一件樣品是次品的概率為,則認為這批產品中有
件次品。某企業的統計資料顯示,產品中發生次品的概率p與日產量n滿足
,有已知每生產一件正品可贏利a元,如果生產一件次品,非但不能贏利,還將損失
元(
).
(1)求該企業日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業日產量的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區間(0,2]上的值不小于6,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數常數
)滿足
.
(1)求出的值,并就常數
的不同取值討論函數
奇偶性;
(2)若在區間
上單調遞減,求
的最小值;
(3)在(2)的條件下,當取最小值時,證明:
恰有一個零點
且存在遞增的正整數數列
,使得
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)(1)已知函數f(x)=lnx﹣x+1,x∈(0,+∞),求函數f(x)的最大值;
(2)設a1,b1(k=1,2…,n)均為正數,證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則…
≤1;
②若b1+b2+…bn=1,則≤
…
≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設關于x函數 其中0
將f(x)的最小值m表示成a的函數m=g(a);
是否存在實數a,使f(x)>0在上恒成立?
是否存在實數a,使函數f(x) 在上單調遞增?若存在,寫出所有的a組成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司承建扇環面形狀的花壇如圖所示,該扇環面花壇是由以點為圓心的兩個同心圓弧
、弧
以及兩條線段
和
圍成的封閉圖形.花壇設計周長為30米,其中大圓弧
所在圓的半徑為10米.設小圓弧
所在圓的半徑為
米(
),圓心角為
弧度.
(1)求關于
的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲廠以x千克/小時的速度運輸生產某種產品(生產條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com