【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
的參數方程為
(
為參數).以原點
為極點,
軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線
的極坐標方程是
.
(1)求直線的直角坐標方程與圓
的普通方程;
(2)點為直線
上的一動點,過點
作直線
與圓
相切于點
,求四邊形
的面積的最小值.
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1, ,其中n∈N*.
(1)設,求證:數列{bn}是等差數列,并求出{an}的通項公式.
(2)設,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得
對于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請說明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
若滿足:
,且
,則稱函數
為“
指向
的完美對稱函數”.已知
是“1指向2的完美對稱函數”,且當
時,
.若函數
在區間
上恰有5個零點,則實數
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知都是各項不為零的數列,且滿足
,
,其中
是數列
的前
項和,
是公差為
的等差數列.
(1)若數列的通項公式分別為
,求數列
的通項公式;
(2)若(
是不為零的常數),求證:數列
是等差數列;
(3)若(
為常數,
),
(
,
),對任意
,
,求出數列
的最大項(用含
式子表達).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】朱世杰是歷史上最未打的數學家之一,他所著的《四元玉鑒》卷中“如像招數一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數比前一天多7人,修筑堤壩的每人每天發大米3升,共發出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應發大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生將語文、數學、英語、物理、化學、生物6科的作業安排在周六、周日完成,要求每天至少完成兩科,且數學,物理作業不在同一天完成,則完成作業的不同順序種數為( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com