【題目】(已知數列{}滿足:
,
為數列
的前
項和.
(1) 若{}是遞增數列,且
成等差數列,求
的值;
(2) 若,且{
}是遞增數列,{
}是遞減數列,求數列{
}的通項公式;
(3) 若,對于給定的正整數
,是否存在一個滿足條件的數列
,使得
,如果存在,給出一個滿足條件的數列,如果不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】2018年是中國改革開放的第40周年,為了充分認識新形勢下改革開放的時代性,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現從年齡在內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用
表示年齡在
內的人數,求
的分布列和數學期望;
(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在
的概率為
.當
最大時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知扇形是一個觀光區的平面示意圖,其中扇形半徑為10米,
,為了便于游客觀光和旅游,提出以下兩種設計方案:
(1)如圖1,擬在觀光區內規劃一條三角形形狀的道路,道路的一個頂點
在弧
上,另一頂點
在半徑
上,且
,求
周長的最大值;
(2)如圖2,擬在觀光區內規劃一個三角形區域種植花卉,三角形花圃的一個頂點
在弧
上,另兩個頂點
在半徑
上,且
,
,求花圃
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某產品的年固定成本為250萬元,每生產千件,需另投入成本
(萬元),若年產量不足
千件,
的圖像是如圖的拋物線,此時
的解集為
,且
的最小值是
,若年產量不小于
千件,
,每千件商品售價為50萬元,通過市場分析,該廠生產的商品能全部售完;
(1)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
是
的中點,△
是等腰三角形,
為
的中點,
為
上一點;
(1)若∥平面
,求
;
(2)平面將三棱柱
分成兩個部分,求含有點
的那部分體積;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名草《周髀算經》曾記載有“勾股各自乘,并而開方除之”,用符號表示為,我們把a,b,c叫做勾股數.下列給出幾組勾股數:3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測第5組股數的三個數依次是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】至2018年底,我國發明專利申請量已經連續8年位居世界首位,下表是我國2012年至2018年發明專利申請量以及相關數據.
總計 | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請量 | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?
(2)建立關于
的回歸直線方程(精確到0.01),并預測我國發明專利申請量突破200萬件的年份.
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數分鐘,經統計以往為100位顧客準備泡茶工具所需的時間,結果如下:
類別 | 鐵觀音 | 龍井 | 金駿眉 | 大紅袍 |
顧客數(人) | 20 | 30 | 40 | 10 |
時間 | 2 | 3 | 4 | 6 |
注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務員恰好在第6分種開始準備第三位顧客的泡茶工具的概率;
(2)用表示至第4分鐘末已準備好了工具的顧客人數,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com