已知橢圓C:的離心率為
,
直線:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線
與橢圓
交于
,
兩點.設直線
的斜率
,在
軸上是否存在點
,使得
是以GH為底邊的等腰三角形. 如果存在,求出實數
的取值范圍,如果不存在,請說明理由.
(Ⅰ).
(Ⅱ)存在滿足題意的點(m,0)且實數
的取值范圍為:
.
解析試題分析:(Ⅰ)利用離心率公式,得到,利用直線與圓相切,圓心到直線的距離等于半徑,得到
,得到
,從而得到橢圓C的方程
.(Ⅱ)通過假設
的方程為
(
),與橢圓方程聯立,應用韋達定理確定交點坐標關系,利用“向量法”得到
. 將
表示成
應用導數或均值定理確定
的范圍.
試題解析:(Ⅰ), 2分
∵直線:y=x+2與圓x2+y2=b2相切,
∴,解得
,則a2="4." 4分
故所求橢圓C的方程為. 5分
(Ⅱ)在軸上存在點
,使得
是以GH為底邊的等腰三角形. 6分
理由如下:
設的方程為
(
),
由
因為直線與橢圓C有兩個交點,所以
所以,又因為
,所以
.
設,
,則
. 7分
.
=.
由于等腰三角形中線與底邊互相垂直,則. 8分
所以.
故.
即
因為,所以
.所以
.
設,當
時,
,
所以函數在
上單調遞增,所以
, 10分
所以 11分
(若學生用基本不等式求解無證明扣1分)
又因為,所以
. 所以
,.
故存在滿足題意的點(m,0)且實數
的取值范圍為:
. 12分
考點:1、橢圓的幾何性質,2、直線與橢圓的位置關系,3、平面向量的坐標運算.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于
,設點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
拋物線與直線
相切,
是拋物線上兩個動點,
為拋物線的焦點,
的垂直平分線
與
軸交于點
,且
.
(1)求的值;
(2)求點的坐標;
(3)求直線的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率等于
,點P
在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為
,過點
的動直線
與橢圓
相交于
兩點,是否存在定直線
:
,使得
與
的交點
總在直線
上?若存在,求出一個滿足條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動圓C經過點,且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當△ABC的面積為
時,求直線m的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
極坐標系中橢圓C的方程為以極點為原點,極軸為
軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程;若橢圓上任一點坐標為,求
的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點
,且直線
與
的傾斜角互補,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點與定點
的距離和它到直線
的距離之比是常數
,記
的軌跡為曲線
.
(I)求曲線的方程;
(II)設直線與曲線
交于
兩點,點
關于
軸的對稱點為
,試問:當
變化時,直線
與
軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com