【題目】某工廠為了對新研發的一種產品進行合理定價,隨機抽取了個試銷售數據,得到第
個銷售單價
(單位:元)與銷售
(單位:件)的數據資料,算得
(1)求回歸直線方程;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤-銷售收入-成本)
附:回歸直線方程中,
,其中
是樣本平均值.
科目:高中數學 來源: 題型:
【題目】已知二次函數同時滿足:①在定義域內存在
,使得
成立;
②不等式的解集有且只有一個元素;數列
的前
項和為
,
,
,
。
(Ⅰ)求的表達式;
(Ⅱ)求數列的通項公式;
(Ⅲ)設,
,
的前
項和為
,若
對任意
,且
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為
,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D( ,﹣
)作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩定點,
和一動點
,給出下列結論:
①若,則點
的軌跡是橢圓;
②若,則點
的軌跡是雙曲線;
③若,則點
的軌跡是圓;
④若,則點
的軌跡關于原點對稱;
⑤若直線與
斜率之積等于
,則點
的軌跡是橢圓(除長軸兩端點).
其中正確的是__________(填序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有個紅球
,
和
個白球
的甲箱與裝有
個紅球
,
和
個白球
,
的乙箱中,各隨機摸出
個球,若模出的
個球都是紅球則中獎,否則不中獎.
(1)用球的標號列出所有可能的模出結果;
(2)有人認為:兩個箱子中的紅球比白球多所以中獎的概率大于不中獎的概率,你認為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點.
(1)證明: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com