【題目】自地面垂直向上發射火箭,火箭的質量為m,試計算將火箭發射到距地面的高度為h時所做的功.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ,
]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,S△ABC= ,c=2,f(C+
)=
﹣
.求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形的面積可無限接近圓的面積,并創立了“割圓術”,利用“割圓術”,劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為( )(參考數據:sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣lnx;g(x)= .
(1)討論函數f(x)的單調性;
(2)求證:若a=e(e是自然常數),當x∈[1,e]時,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當a>1時,對于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界,已知函數
.
(Ⅰ)若是奇函數,求
的值.
(Ⅱ)當時,求函數
在
上的值域,判斷函數
在
上是否為有界函數,并說明理由.
(Ⅲ)若函數在
上是以
為上界的函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大衍數列,來源于中國古代著作《乾坤譜》中對易傳“大衍之數五十”的推論.其前10項為:0、2、4、8、12、18、24、32、40、50.通項公式: ,如果把這個數列{an}排成如圖形狀,并記A(m,n)表示第m行中從左向右第n個數,則A(10,4)的值為( )
A.1200
B.1280
C.3528
D.3612
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 當k=0時,求f(x)的極值;
(Ⅱ) 若對于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點,且在x=±1處的切線斜率均為﹣1,給出以下結論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點有且僅有一個;
③f(x)的最大值與最小值之和等于0.
其中正確的結論有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com