【題目】為了貫徹落實中央省市關于新型冠狀病毒肺炎疫情防控工作要求,積極應對新型冠狀病毒疫情,切實做好2020年春季開學工作,保障校園安全穩定,普及防控知識,確保師生生命安全和身體健康.某校開學前,組織高三年級800名學生參加了“疫情防控”網絡知識競賽(滿分150分).已知這800名學生的成績均不低于90分,將這800名學生的成績分組如下:第一組,第二組
,第三組
,第四組
,第五組
,第六組
,得到的頻率分布直方圖如圖所示.
(1)求的值并估計這800名學生的平均成績(同一組中的數據用該組區間的中點值代表);
(2)該!叭悍廊嚎亍倍讲榻M為更好地督促高三學生的“個人防控”,準備從這800名學生中取2名學生參與督查工作,其取辦法是:先在第二組第五組第六組中用分層抽樣的方法抽取6名學生,再從這6名學生中隨機抽取2名學生.記這2名學生的競賽成績分別為.求事件
的概率.
【答案】(1),
;(2)
【解析】
(1)由頻率分布直方圖可知值,從而可由公式求出這800名學生的平均成績;
(2)由分層抽樣得出這三組抽取的人數分別為2,3,1,然后用列舉法求出從這6名學生中隨機抽取2名學生的所有可能情況,利用古典概率公式求出事件的概率.
(1)由頻率分布直方圖可知,
解得,
這800名學生數學成績的平均數為:
;
(2)由題意可知:第二組抽取2名學生,其成績記為,
,則
,
;
第五組抽取3名學生,其成績記為,
,
,則
;
第六組抽取1名學生,其成績記為,則
;
現從這6名學生中抽取2名學生的成績的基本事件為:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15個.
其中事件包含的基本事件為:
,
,
,
,
,
,
共7個;
記“這2名學生的競賽成績分別為,其中
”為事件
,則
.
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已知數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: ,
,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數據的中位數;
(3)現從被調查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市場研究人員為了了解產業園引進的甲公司前期的經營狀況,對該公司2019年連續六個月(5-10)月)的利潤進行了統計,并根據得到的數據繪制了相應的折線圖,如圖所示.
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼
之間的關系,求
關于
的線性回歸方程,并據此預測該公司2020年5月份的利潤;
(2)甲公司新研制了一款產品,需要采購一批新型材料,現有兩種型號的新型材料可供選擇,按規定每種新型材料最多可使用4個月,但新材料的不穩定性會導致材料損壞的年限不同,現對
兩種型號的新型材料對應的產品各100件進行科學模擬測試,得到兩種新型材料使用壽命的頻數統計表(表).若從產品使用壽命的角度考慮,甲公司的負責人選擇采購哪款新型材料更好?
使用壽命 | 1個月 | 2個月 | 3個月 | 4個月 | 總計 |
材料類型 | |||||
20 | 35 | 35 | 10 | 100 | |
10 | 30 | 40 | 20 | 100 |
參考數據:,
.
參考公式:回歸直線方程,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網上購物逐步走進大學生活,某大學學生宿舍4人積極參加網購,大家約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數為5或6的人去淘寶網購物,擲出點數小于5的人去京東商城購物,且參加者必須從淘寶網和京東商城選擇一家購物.
(1)求這4個人中恰有1人去淘寶網購物的概率;
(2)用,
分別表示這4個人中去淘寶網和京東商城購物的人數,記
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義在R上的奇函數,且當x≥0時,f(x)=-x2+ax.
(1)若a=-2,求函數f(x)的解析式;
(2)若函數f(x)為R上的單調減函數,
①求a的取值范圍;
②若對任意實數m,f(m-1)+f(m2+t)<0恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于等差數列和等比數列的敘述正確的是( )
A.若非常數列為等差數列,則
也可能是等差數列
B.若非常數列為等比數列,則
不可能是等差數列
C.若數列的前n項和
,則數列
可能是等差數列
D.若等差數列的前n項和
有最大值,則公差d可能大于零
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市為了解端午節期間粽子的銷售量,對其所在銷售范圍內的1000名消費者在端午節期間的粽子購買量(單位:g)進行了問卷調查,得到如圖所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)求這1000名消費者的棕子購買量在600g~1400g的人數;
(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數據用該組區間的中點值作代表).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com