【題目】如圖,直四棱柱的底面是菱形,
,
,
,E,M,N分別是
,
,
的中點.
(1)證明:平面
;
(2)求點C到平面的距離.
科目:高中數學 來源: 題型:
【題目】已知四棱錐中,
平面ABCD,
,
,
,M是線段AB的中點.
(1)求證:平面PAB;
(2)已知點N是線段PB的中點,試判斷直線CN與平面PAD的位置關系,并證明你的判斷.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點比較均勻地落在水平的帶狀區域中,說明選用的模型比較合適
C. 兩個模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數.
(1)求實數k的值;
(2)求函數g(x)的定義域;
(3)若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正四棱錐中,
為底面正方形的中心,側棱
與底面
所成的角的正切值為
.
(1)求側面與底面
所成的二面角的大。
(2)若是
的中點,求異面直線
與
所成角的正切值;
(3)問在棱上是否存在一點
,使
⊥側面
,若存在,試確定點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
表示不超過
的最大整數,下列關于
說法正確的有:______.
①的值域為[-1,1]
②為奇函數
③為周期函數,且最小正周期T=4
④在[0,2)上為單調增函數
⑤與
的圖像有且僅有兩個公共點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,制表如圖:
每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件4.5元;乙公司規定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據表中數據寫出甲公司員工A在這10天投遞的快遞件數的平均數和眾數;
(2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數學期望;
(3)根據表中數據估算兩公司的每位員工在該月所得的勞務費.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com