【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1 , F2 , 過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( )
A.
B.
C.
D.
【答案】A
【解析】解:設橢圓的左、右焦點分別為F1(﹣c,0),F2(c,0),
由x=﹣c,代入橢圓方程可得y=± ,
可設A(﹣c, ),C(x,y),
由△ABF2的面積是△BCF2的面積的2倍,
可得 =2
,
即有(2c,﹣ )=2(x﹣c,y),
即2c=2x﹣2c,﹣ =2y,
可得x=2c,y=﹣ ,
代入橢圓方程可得, +
=1,
由e= ,b2=a2﹣c2 ,
即有4e2+ ﹣
e2=1,
解得e= .
故選:A.
設橢圓的左、右焦點分別為F1(﹣c,0),F2(c,0),設x=﹣c,代入橢圓方程,求得A的坐標,設出C(x,y),由△ABF2的面積是△BCF2的面積的2倍,可得 =2
,運用向量的坐標運算可得x,y,代入橢圓方程,運用離心率公式,解方程即可得到所求值.
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,圓
的極坐標方程為
.
(1)求直線的普通方程和圓
的直角坐標方程;
(2)若點是直線
上的動點,過
作直線與圓
相切,切點分別為
、
,若使四邊形
的面積最小,求此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的傾斜角;
(2)設點,直線
和曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)若廣告費與銷售額具有相關關系,求回歸直線方程;
(2)在已有的五組數據中任意抽取兩組,求兩組數據其預測值與實際值之差的絕對值都不超過5的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知,
,動點
滿足
,設動點
的軌跡為曲線
.
(1)求動點的軌跡方程,并說明曲線
是什么圖形;
(2)過點的直線
與曲線
交于
兩點,若
,求直線
的方程;
(3)設是直線
上的點,過
點作曲線
的切線
,切點為
,設
,求證:過
三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當n∈N*時,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com