【題目】已知函數,
.
(1)若在定義域上是增函數,求
的取值范圍;
(2)若存在,使得
,求
的值,并說明理由.
科目:高中數學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產品50件,產品尺寸(單位:)落在各個小組的頻數分布如下表:
數據分組 | |||||||
頻數 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據頻數分布表,求該產品尺寸落在的概率;
(2)求這50件產品尺寸的樣本平均數.(同一組中的數據用該組區間的中點值作代表);
(3)根據頻數分布對應的直方圖,可以認為這種產品尺寸服從正態分布
,其中
近似為樣本平均值
,
近似為樣本方差
,經計算得
.利用該正態分布,求
.
附:(1)若隨機變量服從正態分布
,則
,
;
(2).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某水產品經銷商銷售某種鮮魚,售價為每公斤元,成本為每公斤
元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價處理完,平均每公斤損失
元.根據以往的銷售情況,按
,
,
,
,
進行分組,得到如圖所示的頻率分布直方圖.
(1)求未來連續三天內,該經銷商有連續兩天該種鮮魚的日銷售量不低于公斤,而另一天日銷售量低于
公斤的概率;
(2)在頻率分布直方圖的需求量分組中,以各組區間的中點值代表該組的各個值.
(i)求日需求量的分布列;
(ii)該經銷商計劃每日進貨公斤或
公斤,以每日利潤
的數學期望值為決策依據,他應該選擇每日進貨
公斤還是
公斤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅是我國齊梁時代的數學家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設由橢圓所圍成的平面圖形繞
軸旋轉一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系.已知直線
的參數方程是
(
是參數),圓
的極坐標方程為
.
(1)求圓心的直角坐標;
(2)由直線上的點向圓
引切線,并切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,底面四邊形
是菱形,
,
,
相交于
,
,
在平面
上的射影恰好是線段
的中點
.
(Ⅰ)求證:平面
;
(Ⅱ)若直線與平面
所成的角為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交管部門為宣傳新交規舉辦交通知識問答活動,隨機對該市歲的人群抽樣了
人,回答問題統計結果如圖表所示:
分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 | |
第 | |||
第 | |||
第 | |||
第 | |||
第 |
(1)分別求出,
,
,
的值;
(2)從第,
,
組回答正確的人中用分層抽樣方法抽取
人,則第
,
,
組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的人中隨機抽取
人頒發幸運獎,求:所抽取的
人中至少有一個第
組的人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直角坐標系中動點,參數
,在以原點為極點、
軸正半軸為極軸所建立的極坐標系中,動點
在曲線
:
上.
(1)求點的軌跡
的普通方程和曲線
的直角坐標方程;
(2)若動點的軌跡
和曲線
有兩個公共點,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com