【題目】閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為( )
A.2
B.1
C.0
D.﹣1
【答案】C
【解析】解:模擬執行程序框圖,可得 i=1,S=0
S=cos ,i=2
不滿足條件i>5,S=cos +cosπ,i=3
不滿足條件i>5,S=cos +cosπ+cos
,i=4
不滿足條件i>5,S=cos +cosπ+cos
+cos2π,i=5
不滿足條件i>5,S=cos +cosπ+cos
+cos2π+cos
=0﹣1+0+1+0=0,i=6
滿足條件i>5,退出循環,輸出S的值為0,
故選:C.
【考點精析】通過靈活運用算法的循環結構,掌握在一些算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,循環結構可細分為兩類:當型循環結構和直到型循環結構即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數,
,
,且
的最小值為
.
(1)求的值;
(2)若不等式對任意
恒成立,其中
是自然對數的底數,求
的取值范圍;
(3)設曲線與曲線
交于點
,且兩曲線在點
處的切線分別為
,
.試判斷
,
與
軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=16及圓內一點F(﹣3,0),過F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時直線AB的方程;
(2)若點M在x軸上,且使得MF為△AMB的一條內角平方線,求點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min=
,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2﹣16x+q+3
(1)若函數在區間[﹣1,1]上存在零點,求實數q的取值范圍;
(2)問:是否存在常數q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com