精英家教網 > 高中數學 > 題目詳情

【題目】中,角的三條對邊分別為,.

(1)求;

(2)點在邊上,,,,求.

【答案】(1);(2)2

【解析】

(1)由題意利用正弦定理與三角恒等變換求出sinB與cosB的關系,得出tanB的值,從而求出B的值;

(2)根據互補的兩角正弦值相等,得到sin∠ADB=sin∠ADC的值,再利用正弦、余弦定理求得ADAC的值.

(1)由bcosCbsinCa,

利用正弦定理得:sinBcosCsinBsinC=sinA,

即sinBcosCsinBsinC=sinBcosC+cosBsinC,

sinBsinC=cosBsinC,

C∈(0,π),所以sinC≠0,

所以sinB=cosB,

得tanB,

B∈(0,π),所以B;

(2)如圖所示,

由cos∠ADC,∠ADC∈(0,π),

所以sin∠ADC,

由因為∠ADB=π﹣∠ADC,

所以sin∠ADB=sin∠ADC;

在△ABD中,由正弦定理得,,

AB=4,B,

所以AD;

在△ACD中,由余弦定理得,

AC2AD2+DC2﹣2ADDCcos∠ADC

24,

解得AC=2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知矩陣A的逆矩陣A1=( ).
(1)求矩陣A;
(2)求矩陣A1的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩個不相等的非零向量 , ,兩組向量 , , , , , , 均由2個 和3個 排列而成,記S= + + + + ,Smin表示S所有可能取值中的最小值.則下列命題正確的是(寫出所有正確命題的編號).
①S有5個不同的值;
②若 ,則Smin與| |無關;
③若 ,則Smin與| |無關;
④若| |>4| |,則Smin>0;
⑤若| |=2| |,Smin=8| |2 , 則 的夾角為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.

(1)證明:Q為BB1的中點;
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的極值;

(2)若方程上有兩個不等實根,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數據的中心點();

②回歸直線就是散點圖中經過樣本數據點最多的那條直線;

③當相關性系數時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數就越接近于

其中真命題的個數為(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別是a,b,c,且a2+b2+ ab=c2
(1)求C;
(2)設cosAcosB= , = ,求tanα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖F1、F2是橢圓C1 +y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)是定義在R上的奇函數,且當x0時,fx)=x2+2x.現已畫出函數fx)在y軸左側的圖象如圖所示,

(1)畫出函數fx),xR剩余部分的圖象,并根據圖象寫出函數fx),xR的單調區間;(只寫答案)

2)求函數fx),xR的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视