【題目】現在,很多人都喜歡騎“共享單車”,但也有很多市民并不認可.為了調查人們對這種交通方式的認可度,某同學從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調查了20名市民,得到了一個市民是否認可的樣本,具體數據如下列聯表:
附:,
.
根據表中的數據,下列說法中,正確的是( )
A. 沒有95% 以上的把握認為“是否認可與城市的擁堵情況有關”
B. 有99% 以上的把握認為“是否認可與城市的擁堵情況有關”
C. 可以在犯錯誤的概率不超過0.01的前提下認為“是否認可與城市的擁堵情況有關”
D. 可以在犯錯誤的概率不超過0.025的前提下認為“是否認可與城市的擁堵情況有關”
科目:高中數學 來源: 題型:
【題目】已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點G為DF的中點,AF=EF= ,P在線段CD上運動.
(1)證明:BF∥平面GAC;
(2)當P運動到CD的中點位置時,PG與PB長度之和最小,求二面角P﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣m(lnx+
)(m為實數,e=2.71828…是自然對數的底數). (Ⅰ)當m>1時,討論f(x)的單調性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)內有兩個零點,求實數m的取值范圍.
(Ⅲ)當m=1時,證明:xf(x)+xlnx+1>x+ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三點,
,
,曲線
上任意一點
滿足
.
求的方程;
已知點,動點
在曲線C上,曲線C在Q處的切線
與直線PA,PB都相交,交點分別為D,E,求
與
的面積的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數y=f(x)的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象與函數
的圖象有三個不同的交點
、
、
,其中
.給出下列四個結論: ①
;②
;③
;④
.其中,正確結論的個數有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平行四邊形ABCD中, ,
,若將其沿AC折成直二面角D﹣AC﹣B,則三棱錐D﹣ACB的外接球的表面積為( )
A.16π
B.8π
C.4π
D.2π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,現將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點R,使得面BDR⊥面DCB,若存在,求出點R的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com