【題目】定義區間(a,b)、[a,b)、(a,b]、[a,b]的長度均為d=b﹣a,用[x]表示不超過x的最大整數,例如[3.2]=3,[﹣2.3]=﹣3.記{x}=x﹣[x],設f(x)=[x]{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集區間長度,則當0≤x≤3時有( 。
A.d=1
B.d=2
C.d=3
D.d=4
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的奇函數,且當x≥0時,f(x)=x2 , 若對任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,則實數a的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用數學歸納法證明34n+1+52n+1(n∈N)能被8整除時, 當n=k+1時34(k+1)+1+52(k+1)+1可變形( )
A.56×34k+1+25(34k+1+52k+1)
B.34k+1+52k+1
C.34×34k+1+52×52k+1
D.25(34k+1+52k+1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( 。
A.如果平面α⊥平面β,那么平面α內一定不存在直線平行于平面β
B.平面α⊥平面β,且α∩β=l,若在平面α內過任一點P做L的垂線m,那么m⊥平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,那么平面α∥平面β
D.如果直線l∥平面α,那么直線l平行于平面α內的任意一條直線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)對任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的圖象關于點(1,0)對稱,且f(4)=4,則f(2012)=( )
A.0
B.﹣4
C.﹣8
D.﹣16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com