(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點
距離的二倍,求這條曲線的方程.
科目:高中數學 來源: 題型:解答題
已知橢圓的短軸長等于焦距,橢圓C上的點到右焦點
的最短距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點且斜率為
的直線
與
交于
、
兩點,
是點
關于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點是橢圓
的右頂點,若點
在橢圓上,且滿足
.(其中
為坐標原點)
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點
,當
時,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知為坐標原點,點
分別在
軸
軸上運動,且
=8,動點
滿足
=
,設點
的軌跡為曲線
,定點為
直線
交曲線
于另外一點
(1)求曲線的方程;
(2)求 面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點到
的距離比它到
軸的距離多一個單位.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點作曲線
的切線
,求切線
的方程,并求出
與曲線
及
軸所圍成圖形的面積
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在中,兩個定點
,
的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點。
(1)求動點C的軌跡方程;
(2)斜率為2的直線交動點C的軌跡于P、Q兩點,求
面積的最大值(O是坐標原點)。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經過點
(2,1),平行于
直線
在
軸上的截距為
,設直線
交橢圓于兩個不同點
、
,
(1)求橢圓方程;
(2)求證:對任意的的允許值,
的內心在定直線
。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com