【題目】已知函數f(x)=2x+log2x+b在區間( ,4)上有零點,則實數b的取值范圍是( )
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)
【答案】A
【解析】解:∵y1=2x+b單調遞增,y2=log2x單調遞增
∴f(x)=2x+log2x+b單調遞增
又∵數f(x)=2x+log2x+b在區間( ,4)上有零點,
∴f( )<0,f(4)>0.
∴1﹣1+b<0,8+2+b>0
∴﹣10<b<0.
故選:A.
【考點精析】本題主要考查了函數的零點與方程根的關系的相關知識點,需要掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】從2016年1月1日起,廣東、湖北等18個保監局所轄地區將納入商業車險改革試點范圍,其中最大的變化是上一年的出險次數決定了下一年的保費倍率,具體關系如表:
上一年的 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 | 85% | 100% | 125% | 150% | 175% | 200% |
連續兩年沒有出險打7折,連續三年沒有出險打6折 |
有評估機構從以往購買了車險的車輛中隨機抽取1000輛調查,得到一年中出險次數的頻數分布如下(并用相應頻率估計車輛每年出險次數的概率):
一年中出險次數 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
頻數 | 500 | 380 | 100 | 15 | 4 | 1 |
(1)求某車在兩年中出險次數不超過2次的概率;
(2)經驗表明新車商業車險保費與購車價格有較強的線性相關關系,估計其回歸直線方程為: =120x+1600.(其中x(萬元)表示購車價格,y(元)表示商業車險保費).李先生2016 年1月購買一輛價值20萬元的新車.根據以上信息,試估計該車輛在2017 年1月續保時應繳交的保費,并分析車險新政是否總體上減輕了車主負擔.(假設車輛下一年與上一年都購買相同的商業車險產品進行續保)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在公差不為零的等差數列{an}中,a2=1,a2、a4、a8成等比數列.
(1)求數列{an}的通項公式an;
(2)設數列{an}的前n項和為Sn , 記bn= .Tn=b1+b2+…+bn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義域為
的奇函數,當
.
(Ⅰ)求出函數在
上的解析式;
(Ⅱ)在答題卷上畫出函數的圖象,并根據圖象寫出
的單調區間;
(Ⅲ)若關于的方程
有三個不同的解,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxsin(x+3φ)是奇函數,其中φ∈(0, ),則函數g(x)=cos(2x﹣φ)的圖象( )
A.關于點( ,0)對稱
B.可由函數f(x)的圖象向右平移 個單位得到
C.可由函數f(x)的圖象向左平移 個單位得到
D.可由函數f(x)的圖象向左平移 個單位得到
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
為梯形,
,
,且
.
(Ⅰ)若點為
上一點且
,證明:
平面
;
(Ⅱ)求二面角的大;
(Ⅲ)在線段上是否存在一點
,使得
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某專營店經銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數;
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com