【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設異面直線EM與AF所成的角為,則cos
的最大值為 .
【答案】
【解析】建立坐標系如圖所示.設AB=1, 則=(1,
,0), E(
,0, 0), 設M(0,y, 1)(0≤y≤1), 則
=(-
,y, 1), 由于異面直線所成角的范圍為(0,
], 所以cos
=
=
·[
]2=1-
, 令8y+1=t, 1≤t≤9, 則
=
≥
, 當t=1時取等號,所以cos
=
=
≤
x
=
, 當y=0時, 取得最大值。
【考點精析】根據題目的已知條件,利用異面直線及其所成的角的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為 ,(其中φ為參數),曲線
,以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點A,B(均異于原點O)
(1)求曲線C1 , C2的極坐標方程;
(2)當 時,求|OA|2+|OB|2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標I卷)函數f(x)=cos(x+
)的部分圖像如圖所示,則f(x)的單調遞減區間為( )
A.(k-
,k
+
), k
Z
B.(2k-
,2k
+
),k
Z
C.(k-,k+
), k
Z
D.(2k-,2k+
),k
Z
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)設直線l與拋物線y2=4x相交于A,B兩點,與圓(x-5)2+y2=r2(r>0)相切于點M,且M為線段AB的中點.若這樣的直線l恰有4條,則r的取值范圍是( )
A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)已知A、B、C為△ABC的內角,tanA、tanB是關于方程x2+px-p+1=0(p∈R)兩個實根.
(1)求C的大小
(2)若AB=1,AC=,求p的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)如圖,A , B , C , D為平面四邊形ABCD的四個內角.
(1)證明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan
+tan
+tan
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·陜西)如圖,橢圓E:(a>b>0)經過點A(0,-1),且離心率為
.
(1)求橢圓E的方程;
(2)經過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·江蘇) 已知函數f(x)=x3+ax2+b(a,bR).
(1)試討論f(x)的單調性;
(2)若b=c-a(實數c是a與無關的常數),當函數f(x)有三個不同的零點時,a的取值范圍恰好是(-,-3)
(1,
)
(
,+
),求c的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com